Journal of Elasticity

, Volume 119, Issue 1–2, pp 113–136 | Cite as

Bending Paper and the Möbius Strip

  • Sören Bartels
  • Peter Hornung


We present some rigorous results about the bending behaviour of paper. By adapting these results to the Möbius strip, we obtain some qualitative properties of developable Möbius strips which minimize the bending energy. We also provide some numerical simulations which illustrate and strengthen the analytic results.


Nonlinear elasticity Plate theory Mobius strip Isometric immersions 

Mathematics Subject Classification

74K20 74B20 49Q10 65N30 53A05 



The authors are grateful to Alexis Papathanassopoulos for providing the results of the numerical simulations. The second author was supported by Deutsche Forschungsgemeinschaft grant no. HO-4697/1-1.


  1. 1.
    Alouges, F.: A new finite element scheme for Landau-Lifchitz equations. Discrete Contin. Dyn. Syst., Ser. S 1(2), 187–196 (2008). MR 2379897 (2009a:65244) CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Anderson, I.M.: The variational bicomplex. Technical Report, Utah State Univ. (1989) Google Scholar
  3. 3.
    Bartels, S.: Numerical analysis of a finite element scheme for the approximation of harmonic maps into surfaces. Math. Comput. 79(271), 1263–1301 (2010). MR 2629993 (2011b:65217) CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Bartels, S.: Approximation of large bending isometries with discrete Kirchhoff triangles. SIAM J. Numer. Anal. 51(1), 516–525 (2013). MR 3033021 CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Bartels, S.: Finite element approximation of large bending isometries. Numer. Math. 124(3), 415–440 (2013). MR 3066035 CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Borisov, Ju.F.: C 1,α-isometric immersions of Riemannian spaces. Dokl. Akad. Nauk SSSR 163, 11–13 (1965). MR 0192449 (33 #674) MathSciNetGoogle Scholar
  7. 7.
    Braess, D.: Finite Elements, 3rd edn. Cambridge University Press, Cambridge (2007). Theory, fast solvers, and applications in elasticity theory. Translated from the German by Larry L. Schumaker, MR2322235 (2008b:65142) CrossRefGoogle Scholar
  8. 8.
    Conti, S., Lellis, C., Szekelyhidi, L. Jr.: h-principle and rigidity for C 1,α isometric embeddings. In: Holden, H., Karlsen, K.H. (eds.) Nonlinear Partial Differential Equations. Abel Symposia, vol. 7, pp. 83–116. Springer, Berlin, Heidelberg (2012) (in English) CrossRefGoogle Scholar
  9. 9.
    Dall’Acqua, A., Hornung, P.: Structural results about the singular set of energy minimizing bendings. Preprint (2014) Google Scholar
  10. 10.
    Friesecke, G., James, R.D., Müller, S.: A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity. Commun. Pure Appl. Math. 55(11), 1461–1506 (2002). MR MR1916989 (2003j:74034) CrossRefzbMATHGoogle Scholar
  11. 11.
    Friesecke, G., James, R.D., Müller, S.: A hierarchy of plate models derived from nonlinear elasticity by gamma-convergence. Arch. Ration. Mech. Anal. 180(2), 183–236 (2006). MR MR2210909 (2006k:74061) CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Gromov, M.: Partial Differential Relations. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 9. Springer, Berlin (1986). MR 864505 (90a:58201) CrossRefzbMATHGoogle Scholar
  13. 13.
    Hartman, P., Nirenberg, L.: On spherical image maps whose Jacobians do not change sign. Am. J. Math. 81, 901–920 (1959). MR MR0126812 (23 #A4106) CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Hornung, P.: Analysis of thin elastic films. Leipzig Univ., Diss., Leipzig (2006) Google Scholar
  15. 15.
    Hornung, P.: Approximation of flat W 2,2 isometric immersions by smooth ones. Arch. Ration. Mech. Anal. 199(3), 1015–1067 (2011). MR 2771672 CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Hornung, P.: Euler-Lagrange equation and regularity for flat minimizers of the Willmore functional. Commun. Pure Appl. Math. 64(3), 367–441 (2011). MR 2779088 (2011m:49080) CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Hornung, P.: Fine level set structure of flat isometric immersions. Arch. Ration. Mech. Anal. 199(3), 943–1014 (2011). MR 2771671 (2012d:53194) CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Jerrard, R.L.: Some rigidity results related to Monge-Ampère functions. Can. J. Math. 62(2), 320–354 (2010). MR 2643046 (2011c:49082) CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Kirchheim, B.: Geometry and rigidity of microstructures. Habilitation Thesis, University of Leipzig, Leipzig (2001) Google Scholar
  20. 20.
    Kuiper, N.H.: On C 1-isometric imbeddings. I, II. Nederl. Akad. Wetensch. Proc. Ser. A. 58, 545–556 (1955), 683–689. Indag. Math. 17. MR0075640 (17,782c) CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Massey, W.S.: Surfaces of Gaussian curvature zero in Euclidean 3-space. Tôhoku Math. J. (2) 14, 73–79 (1962). MR MR0139088 (25 #2527) CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Moore, A., Healey, T.J.: The shape of a Möbius strip via elastic rod theory revisited (2014). arXiv:1407.0571
  23. 23.
    Müller, S., Pakzad, M.R.: Regularity properties of isometric immersions. Math. Z. 251(2), 313–331 (2005). MR MR2191030 (2006g:49006) CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Nash, J.: C 1 isometric imbeddings. Ann. Math. (2) 60, 383–396 (1954). MR 0065993 (16,515e) CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Pakzad, M.R.: On the Sobolev space of isometric immersions. J. Differ. Geom. 66(1), 47–69 (2004). MR MR2128713 (2006k:58012) zbMATHMathSciNetGoogle Scholar
  26. 26.
    Pogorelov, A.V.: Extrinsic Geometry of Convex Surfaces. American Mathematical Society, Providence (1973). MR MR0346714 (49 #11439) zbMATHGoogle Scholar
  27. 27.
    Sadowsky, M.: Ein elementarer Beweis für die Existenz eines abwickelbaren Möbius’schen Bandes und Zurückführung des geometrischen Problems auf ein Variationsproblem. Sitzungsber. Preuss. Akad. Wiss. (1930) Google Scholar
  28. 28.
    Sadowsky, M.: Theorie der elastisch biegsamen undehnbaren Bänder mit Anwendungen auf das Möbiussche band. Verhandl. des 3. Intern. Kongr. f. Techn. Mechanik (2), 444–451 (1930) Google Scholar
  29. 29.
    Schmidt, B.: Plate theory for stressed heterogeneous multilayers of finite bending energy. J. Math. Pures Appl. (9) 88(1), 107–122 (2007). MR 2334775 (2008j:74043) CrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    Starostin, E.L., van der Heijden, G.H.M.: The shape of a Möbius strip. Nat. Mater. 6, 563–567 (2007) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Abteilung für Angewandte MathematikAlbert-Ludwigs-Universität FreiburgFreiburgGermany
  2. 2.Institut für Angewandte MathematikUniversität BonnBonnGermany

Personalised recommendations