Journal of Elasticity

, Volume 111, Issue 1, pp 41–65 | Cite as

Derivation of the Linear Elastic String Model from Three-Dimensional Elasticity

  • Maroje Marohnić
  • Josip TambačaEmail author


We derive a one-dimensional model for the displacement and torsion of an elastic string starting from a cylindrical three-dimensional linearized prestressed elastic body with small diameter. The prestress is due to the prior elastic deformation of an isotropic, homogenous, elastic body. We deduce the scaling of forces by a formal asymptotic expansion. Then we prove that the family of solutions of three-dimensional problems converges to a limit that is the unique solution of the string model. Coefficients of the string model depend on the three-dimensional elasticity coefficients and the tension due to the predeformation.


Elastic string Prestress Linearized elasticity Singular perturbation 

Mathematics Subject Classification (2010)

74K05 74B10 


  1. 1.
    Acerbi, E., Buttazzo, G., Percivale, D.: A variational definition of the strain energy for an elastic string. J. Elast. 25, 137–148 (1991) MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Ciarlet, P.G.: Mathematical Elasticity, Vol I: Three-Dimensional Elasticity. North-Holland, Amsterdam (1988) Google Scholar
  3. 3.
    Ciarlet, P.G.: Mathematical Elasticity, Vol II: Theory of Plates. North-Holland, Amsterdam (1997) zbMATHGoogle Scholar
  4. 4.
    Ciarlet, P.G.: Mathematical Elasticity, Vol III: Theory of Shells. North-Holland, Amsterdam (2000) zbMATHGoogle Scholar
  5. 5.
    Della Longa, L., Londero, A.: Thin walled beams with residual stress. J. Elast. 96, 27–41 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Friesecke, G., James, R.D., Müller, S.: A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity. Commun. Pure Appl. Math. 55, 1461–1506 (2002) zbMATHCrossRefGoogle Scholar
  7. 7.
    Friesecke, G., James, R.D., Müller, S.: A hierarchy of plate models derived from nonlinear elasticity by Γ-convergence. Arch. Ration. Mech. Anal. 180, 183–236 (2006) MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Hoger, A.: On the determination of residual stress in an elastic body. J. Elast. 16, 303–324 (1986) MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Irago, H., Viaño, J.M.: Error estimation in the Bernoulli–Navier model for elastic rods. Asymptot. Anal. 21, 71–87 (1999) MathSciNetzbMATHGoogle Scholar
  10. 10.
    Johnson, B.E., Hoger, A.: The dependence of the elasticity tensor on residual stress. J. Elast. 33, 145–165 (1993) MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Jurak, M., Tambača, J.: Derivation and justification of a curved rod model. Math. Models Methods Appl. Sci. 9, 991–1014 (1999) MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Le Dret, H., Raoult, A.: The nonlinear membrane model as variational limit of nonlinear three-dimensional elasticity. J. Math. Pures Appl. 74, 549–578 (1995) MathSciNetzbMATHGoogle Scholar
  13. 13.
    Lewicka, M., Pakzad, M.R.: Scaling laws for non-Euclidean plates and the W 2,2 isometric immersions of Riemannian metrics. ESAIM: Control Optim. Calc. Var. 17, 1158–1173 (2011) MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Lewicka, M., Mahadevan, L., Pakzad, M.R.: The Foppl-von Karman equations for plates with incompatible strains. Proc. R. Soc. A 467, 402–426 (2011) MathSciNetADSzbMATHCrossRefGoogle Scholar
  15. 15.
    Marigo, J.J., Meunier, N.: Hierarchy of one-dimensional models in nonlinear elasticity. J. Elast. 83, 1–28 (2006) MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Miara, B.: Justification of the asymptotic analysis of elastic plates, I: the linear case. Asymptot. Anal. 9, 47–60 (1994) MathSciNetzbMATHGoogle Scholar
  17. 17.
    Mora, M.G., Müller, S.: Derivation of the nonlinear bending-torsion theory for inextensible rods by Γ-convergence. Calc. Var. Partial Differ. Equ. 18, 287–305 (2003) zbMATHCrossRefGoogle Scholar
  18. 18.
    Mora, M.G., Müller, S.: A nonlinear model for inextensible rods as a low energy Γ-limit of three-dimensional nonlinear elasticity. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 21, 271–293 (2004) ADSzbMATHGoogle Scholar
  19. 19.
    Mora, M.G., Müller, S., Schultz, M.G.: Convergence of equilibria of planar thin elastic beams. Indiana Univ. Math. J. 56, 2413–2438 (2007) MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Nečas, J., Hlaváček, I.: Mathematical Theory of Elastic and Elasto-Plastic Bodies: an Introduction. Elsevier, Amsterdam (1980) Google Scholar
  21. 21.
    Paroni, R.: Theory of linearly elastic residually stressed plates. Math. Mech. Solids 11, 137–159 (2006) MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Paroni, R.: The equations of motion of a plate with residual stress. Meccanica 41, 1–21 (2006) MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Truesdell, C.: A First Course in Rational Continuum Mechanics. Springer, New York (1967) Google Scholar
  24. 24.
    Trabucho, L., Viaño, J.M.: Mathematical Modelling of Rods. Handbook of Numerical Analysis, vol. 4, pp. 487–974 (1996) Google Scholar
  25. 25.
    Tutek, Z., Aganović, I.: A justification of the one-dimensional linear model of elastic beam. Math. Methods Appl. Sci. 8, 1–14 (1986) MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of ZagrebZagrebCroatia

Personalised recommendations