Advertisement

Journal of Elasticity

, Volume 107, Issue 1, pp 65–79 | Cite as

Existence of Surface Waves and Band Gaps in Periodic Heterogeneous Half-spaces

  • L. X. Hu
  • L. P. Liu
  • K. Bhattacharya
Article

Abstract

We find a sufficient condition for the existence of surface (Rayleigh) waves based on the Rayleigh-Ritz variational method. When specialized to a homogeneous half-space, the sufficient condition recovers the known criterion for the existence of subsonic surface waves. A simple existence criterion in terms of material properties is obtained for periodic half-spaces of general anisotropic materials. Further, we numerically compute the dispersion relation of the surface waves for a half-space of periodic laminates of two materials and demonstrate the existence of surface wave band gaps.

Keywords

Surface waves Periodic half-space Band gaps 

Mathematics Subject Classification (2000)

74J15 74J05 35C07 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Allaire, G., Conca, C.: Bloch wave homogenization and spectral asymptotic analysis. J. Math. Pures Appl. 77, 153–208 (1998) MATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Barnett, D.M., Lothe, J.: Free surface (Rayleigh) waves in anisotropic elastic half-spaces: the surface impedance method. Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 402, 135–152 (1985) MATHADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    Barnett, D.M., Lothe, J., Nishioka, K., Asaro, R.J.: Elastic surface waves in anisotropic crystals: a simplified method for calculating Rayleigh velocities using dislocation theory. J. Phys. F, Met. Phys. 3, 1083–1096 (1973) ADSCrossRefGoogle Scholar
  4. 4.
    Benchabane, S., Khelif, A., Rauch, J.Y., Robert, L., Laude, V.: Evidence for complete surface wave band gap in a piezoelectric phononic crystal. Phys. Rev. E 73, 065601 (2006) ADSCrossRefGoogle Scholar
  5. 5.
    Bonnet-Bendhia, A., Starling, F.: Guided waves by electromagnetic gratings and non-uniqueness examples for the diffraction problem. Math. Methods Appl. Sci. 17, 305–338 (1994) MATHADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    Chadwick, P., Smith, G.D.: Foundations of the theory of surface waves in anisotropic elastic materials. Adv. Appl. Mech. 17, 303–376 (1977) MATHCrossRefGoogle Scholar
  7. 7.
    Coddington, E.A., Levinson, N.: The Theory of Ordinary Differential Equations. McGraw-Hill, New York (1955) Google Scholar
  8. 8.
    Davies, E.B.: Spectral Theory and Differential Operators. Cambridge University Press, Cambridge (1995) CrossRefGoogle Scholar
  9. 9.
    Davison, S.G., Steslicka, M.: Basic Theory of Surface States. Oxford University Press, London (1996) Google Scholar
  10. 10.
    Djafari-Rouhani, B., Maradudin, A.A., Wallis, R.F.: Rayleigh waves on a superlattice stratified normal to the surface. Phys. Rev. B 29, 6454–6462 (1984) ADSCrossRefGoogle Scholar
  11. 11.
    Eastham, M.S.P.: Gaps in the essential spectrum associated with singular differential operators. Q. J. Math. 18, 155–168 (1967) MATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Eastham, M.S.P.: The Spectral Theory of Periodic Differential Equations. Scottish Academic Press, Edinburgh (1973) MATHGoogle Scholar
  13. 13.
    Farnell, G.W.: Properties of elastic surface waves. In: Mason, W.P., Thurston, R.N. (eds.) Physical Acoustics, pp. 109–166 (1973) Google Scholar
  14. 14.
    Fu, Y.B., Mielke, A.: A new identity for the surface impedance matrix and its application to the determination of surface-wave speed. Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 458, 2523–2543 (2002) MATHADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    Fu, Y.B., Mielke, A.: Uniqueness of surface-wave speed: a proof that is independent of the Stroh formalism. Math. Mech. Solids 9, 5–16 (2004) MathSciNetCrossRefGoogle Scholar
  16. 16.
    Jikov, V.V., Kozlov, S.M., Oleinik, O.A.: Homogenization of Differential Operators and Integral Functionals. Springer, Berlin, New York (1994) CrossRefGoogle Scholar
  17. 17.
    Kamotskii, I.V., Kiselev, A.P.: An energy approach to the proof of the existence of Rayleigh waves in an anisotropic elastic half-space. PMM J. Appl. Math. Mech. 73, 464–470 (2000) MathSciNetCrossRefGoogle Scholar
  18. 18.
    Landau, L.D., Lifshitz, E.M.: Theory of Elasticity. Pergamon Press, Elmsford (1986) Google Scholar
  19. 19.
    Linton, C.M., McIver, M.: The existence of Rayleigh-Bloch surface waves. J. Fluid Mech. 470, 85–90 (2002) MATHADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    Manzanares-Martínez, B., Ramos-Mendieta, R.: Surface elastic waves in solid composites of two-dimensional periodicity. Phys. Rev. B 68, 134303 (2003) ADSCrossRefGoogle Scholar
  21. 21.
    Matysiak, S., Mieszkowski, R., Perkowski, D.: Surface waves in a periodic two-layered elastic half-space with the boundary normal to the layering. Acta Mech. 207, 235–243 (2009). doi: 10.1007/s00707-008-0125-4 MATHCrossRefGoogle Scholar
  22. 22.
    Milton, G.W.: The Theory of Composites. Cambridge University Press, Cambridge (2002) MATHCrossRefGoogle Scholar
  23. 23.
    Pendry, J.B.: Calculating photonic band structure. J. Phys., Condens. Matter 8, 1085–1108 (1996) ADSCrossRefGoogle Scholar
  24. 24.
    Pendry, J.B., Martín-Moreno, L., Garcia-Vidal, F.J.: Mimicking surface plasmons with structured surfaces. Science 305, 847–848 (2004) ADSCrossRefGoogle Scholar
  25. 25.
    Rayleigh, L.: On waves propagated along the plane surface of an elastic solid. Proc. London Math. Soc. s1-17, 4–11 (1885) CrossRefGoogle Scholar
  26. 26.
    Schechter, M.: Operator Method in Quantum Mechanics. North Holland, Amsterdam (1981) Google Scholar
  27. 27.
    Stoneley, R.: Elastic waves at the surface of separation of two solids. Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 106, 416–428 (1924) ADSCrossRefGoogle Scholar
  28. 28.
    Stoneley, R.: The seismological implications of aeolotropy in continental structure. Mon. Not. R. Astron. Soc., Geophys. Suppl. 5, 343–353 (1949) MATHGoogle Scholar
  29. 29.
    Stoneley, R.: The propagation of surface elastic waves in a cubic crystal. Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 232, 447–458 (1955) MATHADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    Stroh, A.N.: Dislocations and cracks in anisotropic elasticity. Philos. Mag. 3, 625–646 (1958) MATHADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    Stroh, A.N.: Steady state problems in anisotropic elasticity. J. Math. Phys. 41, 77–103 (1962) MATHMathSciNetGoogle Scholar
  32. 32.
    Ting, T.C.T.: Anisotropic Elasticity: Theory and Applications. Oxford University Press, London (1996) MATHGoogle Scholar
  33. 33.
    Ting, T.C.T., Barnett, D.M.: Classification of surface waves in anisotropic elastic materials. Wave Motion 26, 207–218 (1997) MATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUniversity of HoustonHoustonUSA
  2. 2.Division of Engineering and Applied ScienceCalifornia Institute of Technology PasadenaPasadenaUSA

Personalised recommendations