Journal of Elasticity

, Volume 106, Issue 2, pp 149–164 | Cite as

Hyperbolicity of Velocity-Stress Equations for Waves in Anisotropic Elastic Solids

Article

Abstract

This paper reports mathematical properties of the three-dimensional, first-order, velocity-stress equations for propagating waves in anisotropic, linear elastic solids. The velocity-stress equations are useful for numerical solution. The original equations include the equation of motion and the elasticity relation differentiated by time. The result is a set of nine, first-order partial differential equations (PDEs) of which the velocity and stress components are the unknowns. Cast into a vector-matrix form, the equations can be characterized by three Jacobian matrices. Hyperbolicity of the equations is formally proved by analyzing (i) the spectrum of a linear combination of the three Jacobian matrices, and (ii) the eigenvector matrix for diagonalizing the linearly combined Jacobian matrices. In the three-dimensional space, linearly combined Jacobian matrices are shown to be connected to the classic Christoffel matrix, leading to a simpler derivation for the eigenvalues and eigenvectors. The results in the present paper provide critical information for applying modern numerical methods, originally developed for solving conservation laws, to elastodynamics.

Keywords

Hyperbolicity Anisotropy Velocity-stress equations Eigen structure Elasticity 

Mathematics Subject Classification (2010)

35L02 35L04 35L05 35L65 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Auld, B.A.: Acoustic Fields and Waves in Solids, 2nd edn. Krieger, Melbourne (1990) Google Scholar
  2. 2.
    Ballantine, D.S., Wohltjen, H.: Surface acoustic wave devices for chemical analysis. Anal. Chem. 61(11), 704A–715A (1989) CrossRefGoogle Scholar
  3. 3.
    Chang, S.: The method of Space-Time conservation element and solution element—a new approach for solving the Navier-Stokes and Euler equations. J. Comput. Phys. 119(2), 295–324 (1995) CrossRefMATHADSMathSciNetGoogle Scholar
  4. 4.
    Kacimi, A.E., Laghrouche, O.: Numerical modelling of elastic wave scattering in frequency domain by the partition of unity finite element method. Int. J. Numer. Methods Eng. 77(12), 1646–1669 (2009) CrossRefMATHGoogle Scholar
  5. 5.
    Kreiss, H.O.: Methods for the approximate solution of time dependent problems. Global Atmospheric Research Programme—WMO-ICSU Joint Organizing Committee (1973) Google Scholar
  6. 6.
    Kulikovskii, A.G., Pogorelov, N.V., Semenov, A.Y.: Mathematical Aspects of Numerical Solution of Hyperbolic Systems. Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, vol. 118. Chapman & Hall/CRC, Boca Raton (2001) MATHGoogle Scholar
  7. 7.
    Käser, M., Dumbser, M.: An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes; I. The two-dimensional isotropic case with external source terms. Geophys. J. Int. 166(2), 855–877 (2006) CrossRefADSGoogle Scholar
  8. 8.
    LeVeque, R.J.: Finite-Volume Methods for Hyperbolic Problems. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (2002) CrossRefMATHGoogle Scholar
  9. 9.
    LeVeque, R.J.: Finite-volume methods for non-linear elasticity in heterogeneous media. Int. J. Numer. Methods Fluids 40(1–2), 93–104 (2002) CrossRefMATHADSMathSciNetGoogle Scholar
  10. 10.
    Lindner, G.: Sensors and actuators based on surface acoustic waves propagating along solid-liquid interfaces. J. Phys. D, Appl. Phys. 41(12), 123002 (2008) CrossRefADSGoogle Scholar
  11. 11.
    Meyer, C.D.: Matrix Analysis and Applied Linear Algebra. Society for Industrial and Applied Mathematics, Philadelphia (2000) CrossRefMATHGoogle Scholar
  12. 12.
    Musgrave, M.J.P.: Crystal Acoustics; Introduction to the Study of Elastic Waves and Vibrations in Crystals. Holden-Day, San Francisco (1970) MATHGoogle Scholar
  13. 13.
    de la Puente, J., Käser, M., Dumbser, M., Igel, H.: An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes; IV. Anisotropy. Geophys. J. Int. 169(3), 1210–1228 (2007) CrossRefADSGoogle Scholar
  14. 14.
    Reed, W.H., Hill, T.R.: Triangular mesh methods for the neutron transport equation. Technical Report LA-UR-73-479, Los Alamos Scientific Laboratory (1973) Google Scholar
  15. 15.
    Richtmyer, R.D., Morton, K.W.: Difference Methods for Initial-Value Problems, 2nd edn. Interscience Publishers, New York (1967) MATHGoogle Scholar
  16. 16.
    Saenger, E.H., Gold, N., Shapiro, S.A.: Modeling the propagation of elastic waves using a modified finite-difference grid. Wave Motion 31(1), 77–92 (2000) CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Shorr, B.F.: The Wave Finite Element Method, 1st edn. Springer, Berlin (2004) MATHGoogle Scholar
  18. 18.
    Smith, O.K.: Eigenvalues of a symmetric 3×3 matrix. Commun. ACM 4(4), 168 (1961) CrossRefGoogle Scholar
  19. 19.
    Strang, G.: Linear Algebra and Its Applications, 4th edn. Thomson, Brooks/Cole, Belmont (2006) Google Scholar
  20. 20.
    Ting, T.C.: Anisotropic Elasticity: Theory and Applications. Oxford University Press, New York (1996) MATHGoogle Scholar
  21. 21.
    Virieux, J.: P-SV wave propagation in heterogeneous media: Velocity-stress finite-difference method. Geophysics 51(4), 889–901 (1986) CrossRefADSGoogle Scholar
  22. 22.
    Warming, R.F., Beam, R.M., Hyett, B.J.: Diagonalization and simultaneous symmetrization of the Gas-Dynamic matrices. Math. Comput. 29(132), 1037–1045 (1975) CrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    Weigel, R., Morgan, D., Owens, J., Ballato, A., Lakin, K., Hashimoto, K., Ruppel, C.: Microwave acoustic materials, devices, and applications. IEEE Trans. Microw. Theory Tech. 50(3), 738–749 (2002) CrossRefADSGoogle Scholar
  24. 24.
    Yang, L., Chen, Y., Yu, S.J.: Velocity-stress equations for waves in solids of hexagonal symmetry solved by the Space-Time CESE method. ASME J. Vib. Acoust. (2010). doi:10.1115/1.4002170 Google Scholar
  25. 25.
    Yu, S.J., Yang, L., Lowe, R.L., Bechtel, S.E.: Numerical simulation of linear and nonlinear waves in hypoelastic solids by the CESE method. Wave Motion 47(3), 168–182 (2010) CrossRefMathSciNetMATHGoogle Scholar
  26. 26.
    Zhang, J., Gao, H.: Elastic wave modelling in 3-D fractured media: an explicit approach. Geophys. J. Int. 117(3), 1233–1241 (2009) CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Yung-Yu Chen
    • 1
  • Lixiang Yang
    • 1
  • Sheng-Tao John Yu
    • 1
  1. 1.Department of Mechanical and Aerospace EngineeringThe Ohio State UniversityColumbusUSA

Personalised recommendations