Journal of Elasticity

, Volume 106, Issue 2, pp 123–147

Instabilities of Hyperelastic Fiber Composites: Micromechanical Versus Numerical Analyses


DOI: 10.1007/s10659-011-9313-x

Cite this article as:
Rudykh, S. & deBotton, G. J Elast (2012) 106: 123. doi:10.1007/s10659-011-9313-x


Macroscopic instabilities of fiber reinforced composites undergoing large deformations are studied. Analytical predictions for the onset of instability are determined by application of a new variational estimate for the behavior of hyperelastic composites. The resulting, closed-form expressions, are compared with corresponding predictions of finite element simulations. The simulations are performed with 3-D models of periodic composites with hexagonal unit cell subjected to compression along the fibers as well as to non-aligned compression. Throughout, the analytical predictions for the failures of neo-Hookean and Gent composites are in agreement with the numerical simulations. It is found that the critical stretch ratio for Gent composites is close to the one determined for neo-Hookean composites with similar volume fractions and contrasts between the phases properties. During non-aligned compression the fibers rotate and hence, for some loading directions, the compression along the fibers never reaches the level at which loss of stability may occur.


Finite deformation Instability Bifurcation Homogenization Variational estimate Fiber composite 

Mathematics Subject Classification (2000)

74G60 74Q15 

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.The Pearlstone Center for Aeronautical Studies, Department of Mechanical EngineeringBen-Gurion UniversityBeer-ShevaIsrael
  2. 2.Department of Biomedical EngineeringBen-Gurion UniversityBeer-ShevaIsrael

Personalised recommendations