Advertisement

Journal of Elasticity

, Volume 106, Issue 2, pp 123–147 | Cite as

Instabilities of Hyperelastic Fiber Composites: Micromechanical Versus Numerical Analyses

Article

Abstract

Macroscopic instabilities of fiber reinforced composites undergoing large deformations are studied. Analytical predictions for the onset of instability are determined by application of a new variational estimate for the behavior of hyperelastic composites. The resulting, closed-form expressions, are compared with corresponding predictions of finite element simulations. The simulations are performed with 3-D models of periodic composites with hexagonal unit cell subjected to compression along the fibers as well as to non-aligned compression. Throughout, the analytical predictions for the failures of neo-Hookean and Gent composites are in agreement with the numerical simulations. It is found that the critical stretch ratio for Gent composites is close to the one determined for neo-Hookean composites with similar volume fractions and contrasts between the phases properties. During non-aligned compression the fibers rotate and hence, for some loading directions, the compression along the fibers never reaches the level at which loss of stability may occur.

Keywords

Finite deformation Instability Bifurcation Homogenization Variational estimate Fiber composite 

Mathematics Subject Classification (2000)

74G60 74Q15 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agoras, M., Lopez-Pamies, O., Castañeda, P.P.: A general hyperelastic model for incompressible fiber-reinforced elastomers. J. Mech. Phys. Solids 57, 268–286 (2009) CrossRefMATHADSGoogle Scholar
  2. 2.
    Agoras, M., Lopez-Pamies, O., Ponte Castañeda, P.: Onset of macroscopic instabilities in fiber-reinforced elastomers at finite strain. J. Mech. Phys. Solids 57, 1828–1850 (2009) CrossRefMATHADSMathSciNetGoogle Scholar
  3. 3.
    Aravas, N., Cheng, C., Ponte Castañeda, P.: Steady-state creep of fiber-reinforced composites: constitutive equations and computational issues. Int. J. Solids Struct. 32, 2219–2244 (1995) CrossRefMATHGoogle Scholar
  4. 4.
    Bertoldi, K., Boyce, M.C.: Wave propagation and instabilities in monolithic and periodically structured elastomeric materials undergoing large deformations. Phys. Rev. B 78, 184107 (2008) CrossRefADSGoogle Scholar
  5. 5.
    Biot, M.A.: Mechanics of Incremental Deformations. Wiley, New York (1965), New-York Google Scholar
  6. 6.
    Budiansky, B.: Micromechanics. Comput. Struct. 16, 3–12 (1983) CrossRefMATHGoogle Scholar
  7. 7.
    deBotton, G.: Transversely isotropic sequentially laminated composites in finite elasticity. J. Mech. Phys. Solids 53, 1334–1361 (2005) CrossRefMATHADSMathSciNetGoogle Scholar
  8. 8.
    deBotton, G., Hariton, I.: Out-of-plane shear deformation of a neo-Hookean fiber composite. Phys. Lett. A 354, 156–160 (2006) CrossRefMATHADSGoogle Scholar
  9. 9.
    deBotton, G., Schulgasser, K.: Bifurcation of orthotropic solids. J. Appl. Mech. Trans. ASME 63, 317–320 (1996) CrossRefMATHADSGoogle Scholar
  10. 10.
    deBotton, G., Shmuel, G.: Mechanics of composites with two families of finitely extensible fibers undergoing large deformations. J. Mech. Phys. Solids 57, 1165–1181 (2009) CrossRefMATHADSGoogle Scholar
  11. 11.
    deBotton, G., Shmuel, G.: A new variational estimate for the effective response of hyperelastic composites. J. Mech. Phys. Solids 58, 466–483 (2010) CrossRefADSMathSciNetGoogle Scholar
  12. 12.
    deBotton, G., Hariton, I., Socolsky, E.A.: Neo-Hookean fiber-reinforced composites in finite elasticity. J. Mech. Phys. Solids 54, 533–559 (2006) CrossRefMATHADSMathSciNetGoogle Scholar
  13. 13.
    Ericksen, J.L., Rivlin, R.S.: Large elastic deformations of homogeneous anisotropic materials. Arch. Ration. Mech. Anal. 3, 281–301 (1954) MATHMathSciNetGoogle Scholar
  14. 14.
    Fleck, N.: Compressive failure of fiber composites. Adv. Appl. Mech. 33, 43–117 (1997) CrossRefGoogle Scholar
  15. 15.
    Gent, A.N.: A new constitutive relation for rubber. Rubber Chem. Technol. 69, 59–61 (1996) CrossRefMathSciNetGoogle Scholar
  16. 16.
    Geymonat, G., Müller, S., Triantafyllidis, N.: Homogenization of nonlinearly elastic materials, microscopic bifurcation and macroscopic loss of rank-one convexity. Arch. Ration. Mech. Anal. 122, 231–290 (1993) CrossRefMATHGoogle Scholar
  17. 17.
    He, Q.C., Le Quang, H., Feng, Z.Q.: Exact results for the homogenization of elastic fiber-reinforced solids at finite strain. J. Elast. 83, 153–177 (2006) CrossRefMATHGoogle Scholar
  18. 18.
    Hill, R.: On constitutive macro-variables for heterogeneous solids at finite strain. Proc. R. Soc. Lond. A 326, 131–147 (1972) CrossRefMATHADSGoogle Scholar
  19. 19.
    Hill, R., Hutchinson, J.W.: Bifurcation phenomena in the plane tension test. J. Mech. Phys. Solids 23, 239–264 (1975) CrossRefMATHADSMathSciNetGoogle Scholar
  20. 20.
    Horgan, C., Saccomandi, G.: A molecular-statistical basis for the gent constitutive model of rubber elasticity. J. Elast. 68, 167–176 (2002) CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Khisaeva, Z., Ostoja-Starzewski, M.: On the size of RVE in finite elasticity of random composites. J. Elast. 85, 153–173 (2006) CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    Kittel, C.: Introduction to Solid State Physics, 8th edn. Wiley, New York (2004) Google Scholar
  23. 23.
    Lopez-Pamies, O., Idiart, M.: Fiber-reinforced hyperelastic solids: a realizable homogenization constitutive theory. J. Eng. Math. 68, 57–83 (2010) CrossRefMATHMathSciNetGoogle Scholar
  24. 24.
    Lopez-Pamies, O., Ponte Castañeda, P.: Second-order estimates for the macroscopic response and loss of ellipticity in porous rubbers at large deformations. J. Elast. 76, 247–287 (2004) CrossRefMATHGoogle Scholar
  25. 25.
    Lopez-Pamies, O., Ponte Castañeda, P.: On the overall behavior, microstructure evolution, and macroscopic stability in reinforced rubbers at large deformations: I—theory. J. Mech. Phys. Solids 54, 807–830 (2006) CrossRefMATHADSMathSciNetGoogle Scholar
  26. 26.
    Merodio, J., Ogden, R.W.: Material instabilities in fiber-reinforced nonlinearly elastic solids under plane deformation. Arch. Mech. 54, 525–552 (2002) MATHMathSciNetGoogle Scholar
  27. 27.
    Merodio, J., Pence, T.J.: Kink surfaces in a directionally reinforced neo-Hookean material under plane deformation: II. Kink band stability and maximally dissipative band broadening. J. Elast. 62(2), 145–170 (2001) CrossRefMathSciNetGoogle Scholar
  28. 28.
    Michel, J.C., Lopez-Pamies, O., Castañeda, P.P., Triantafyllidis, N.: Microscopic and macroscopic instabilities in finitely strained porous elastomers. J. Mech. Phys. Solids 55, 900–938 (2007) CrossRefMATHADSMathSciNetGoogle Scholar
  29. 29.
    Moraleda, J., Segurado, J., LLorca, J.: Finite deformation of incompressible fiber-reinforced elastomers: a computational micromechanics approach. J. Mech. Phys. Solids (2009), doi: 10.1016/j.jmps.2009.05.007
  30. 30.
    Nestorovic, M.D., Triantafyllidis, N.: Onset of failure in finitely strained layered composites subjected to combined normal and shear loading. J. Mech. Phys. Solids 52, 941–974 (2004) CrossRefMATHADSGoogle Scholar
  31. 31.
    Ogden, R.W.: On the overall moduli of non-linear elastic composite materials. J. Mech. Phys. Solids 22, 541–553 (1974) CrossRefMATHADSGoogle Scholar
  32. 32.
    Ogden, R.W.: Non-Linear Elastic Deformations. Dover Publications, New York (1997) Google Scholar
  33. 33.
    Ogden, R.W.: Nonlinear Elasticity and Fibrous Structure in Arterial Wall Mechanics. Lecture Notes for Summer School on Modeling and Computation in Biomechanics. Graz University of Technology, Graz (2008) Google Scholar
  34. 34.
    O’Halloran, A., O’Malley, F., McHugh, P.: A review on dielectric elastomer actuators, technology, applications, and challenges. J. Appl. Phys. 104, 071101 (2008) CrossRefADSGoogle Scholar
  35. 35.
    Ponte Castañeda, P.: The effective mechanical properties of nonlinear isotropic composites. J. Mech. Phys. Solids 39, 45–71 (1991) CrossRefMATHMathSciNetGoogle Scholar
  36. 36.
    Ponte Castañeda, P., Tiberio, E.: A second-order homogenization method in finite elasticity and applications to black-filled elastomers. J. Mech. Phys. Solids 48, 1389–1411 (2000) CrossRefMATHADSMathSciNetGoogle Scholar
  37. 37.
    Qiu, G., Pence, T.: Loss of ellipticity in plane deformation of a simple directionally reinforced incompressible nonlinearly elastic solid. J. Elast. 49, 31–63 (1997) CrossRefMATHMathSciNetGoogle Scholar
  38. 38.
    Rosen, B.W.: Mechanics of composite strengthening. In: Fibre Composite Materials, pp. 37–75. Am. Soc. Metals, Ohio (1965) Google Scholar
  39. 39.
    Shmuel, G., deBotton, G.: Out-of-plane shear of fiber composites at moderate stretch levels. J. Eng. Math. 68, 85–97 (2010) CrossRefMATHMathSciNetGoogle Scholar
  40. 40.
    Triantafyllidis, N., Maker, B.N.: On the comparison between microscopic and macroscopic instability mechanisms in a class of fiber-reinforced composites. J. Appl. Mech., Trans. ASME 52, 794–800 (1985) CrossRefMATHADSGoogle Scholar
  41. 41.
    Triantafyllidis, N., Nestorovic, M.D., Schraad, M.W.: Failure surfaces for finitely strained two-phase periodic solids under general in-plane loading. J. Appl. Mech., Trans. ASME 73(3), 505–515 (2006) CrossRefMATHADSGoogle Scholar
  42. 42.
    Yeoh, O.H.: Some forms of the strain-energy function for rubber. Rubber Chem. Technol. 66, 754–771 (1993) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.The Pearlstone Center for Aeronautical Studies, Department of Mechanical EngineeringBen-Gurion UniversityBeer-ShevaIsrael
  2. 2.Department of Biomedical EngineeringBen-Gurion UniversityBeer-ShevaIsrael

Personalised recommendations