Journal of Elasticity

, Volume 106, Issue 1, pp 71–103 | Cite as

Multiscale Dynamics of Heterogeneous Media in the Peridynamic Formulation

  • Bacim Alali
  • Robert LiptonEmail author


A methodology is presented for investigating the dynamics of heterogeneous media using the nonlocal continuum model given by the peridynamic formulation. The approach presented here provides the ability to model the macroscopic dynamics while at the same time resolving the dynamics at the length scales of the microstructure. Central to the methodology is a novel two-scale evolution equation. The rescaled solution of this equation is shown to provide a strong approximation to the actual deformation inside the peridynamic material. The two scale evolution can be split into a microscopic component tracking the dynamics at the length scale of the heterogeneities and a macroscopic component tracking the volume averaged (homogenized) dynamics. The interplay between the microscopic and macroscopic dynamics is given by a coupled system of evolution equations. The equations show that the forces generated by the homogenized deformation inside the medium are related to the homogenized deformation through a history dependent constitutive relation.


Peridynamics Nonlocal forces Elasticity Multiscale Heterogeneous materials Dynamics 

Mathematics Subject Classification (2000)



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Allaire, G.: Homogenization and two-scale convergence. SIAM J. Math. Anal. 23(6), 1482–1518 (1992) CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Bobaru, F., Silling, S.A.: Peridynamic 3D problems of nanofiber networks and carbon nanotube-reinforced composites. In: Materials and Design: Proceedings of Numiform. American Institute of Physics, pp. 1565–1570 (2004) Google Scholar
  3. 3.
    Bobaru, F., Silling, S.A., Jiang, H.: Peridynamic fracture and damage modeling of membranes and nanofiber networks. In: Proceedings of the XI International Conference on Fracture, Turin, Italy, vol. 5748, pp. 1–6 (2005) Google Scholar
  4. 4.
    Burch, N., Lehoucq, R.B. Classical, nonlocal, and fractional diffusion equations. Int. J. Multiscale Comput. Eng. (to appear) Google Scholar
  5. 5.
    Clark, G.W., Showalter, R.E.: Two-scale convergence of a model for flow in a partially fissured medium. Electron. J. Differ. Equ. 1999(02), 1–20 (1999) MathSciNetGoogle Scholar
  6. 6.
    Dayal, K., Bhattacharya, K.: Kinetics of phase transformations in the peridynamic formulation of continuum mechanics. J. Mech. Phys. Solids 54, 1811–1842 (2006) CrossRefzbMATHADSMathSciNetGoogle Scholar
  7. 7.
    Du, Q., Zhou, K.: Mathematical analysis for the peridynamic nonlocal continuum theory. M2AN (2010). doi: 10.1051/m2an/2010040 Google Scholar
  8. 8.
    Emmrich, E., Weckner, O.: On the well-posedness of the linear peridynamic model and its convergence towards the Navier equation of linear elasticity. Commun. Math. Sci. 5(4), 851–864 (2007) zbMATHMathSciNetGoogle Scholar
  9. 9.
    Engel, K.-J., Nagel, R.: One-Parameter Semigroups for Linear Evolution Equations. Springer, New York (2000) zbMATHGoogle Scholar
  10. 10.
    Gerstle, W., Sau, N., Silling, S.A.: Peridynamic modeling of plain and reinforced concrete structures. In: SMiRT18: 18th lnt. Conf. Struct. Mech. React. Technol., Beijing (2005) Google Scholar
  11. 11.
    Gunzburger, M., Lehoucq, R.B.: A nonlocal vector calculus with application to nonlocal boundary value problems. Multiscale Model. Simul. 8(5), 1581–1598 (2010) CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Lehoucq, R.B., Silling, S.A.: Force flux and the peridynamic stress tensor. J. Mech. Phys. Solids 56, 1566–1577 (2008) CrossRefzbMATHADSMathSciNetGoogle Scholar
  13. 13.
    Lukkassen, D., Nguetseng, G., Wall, P.: Two-scale convergence. Int. J. Pure Appl. Math., 2(1), 35–86 (2002) zbMATHMathSciNetGoogle Scholar
  14. 14.
    Nguetseng, G.: A general convergence result for a functional related to the theory of homogenization. SIAM J. Math. Anal. 20(3), 608–623 (1989) CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, Berlin (1983) CrossRefzbMATHGoogle Scholar
  16. 16.
    Parks, M.L., Lehoucq, R.B., Plimpton, S.J., Silling, S.A.: Implementing peridynamics within a molecular dynamics code. Comput. Phys. Commun. 179, 777–783 (2008) CrossRefzbMATHADSGoogle Scholar
  17. 17.
    Showalter, R.E.: Distributed microstructure models of porous media. In: Hornung, U. (ed.) Flow in Porous Media: proceedings of the Oberwolfach Conference, 21–27 June 1992. International Series of Numerical Mathematics, vol. 114. Birkhauser, Basel (1993) Google Scholar
  18. 18.
    Silling, S.A.: Reformulation of elasticity theory for discontinuities and long-range forces. J. Mech. Phys. Solids 48, 175–209 (2000) CrossRefzbMATHADSMathSciNetGoogle Scholar
  19. 19.
    Silling, S.A.: Dynamic fracture modeling with a meshfree peridynamic code. In: Bathe, K.J. (ed.) Computational Fluid and Solid Mechanics, pp. 641–644. Elsevier, Amsterdam (2003) CrossRefGoogle Scholar
  20. 20.
    Silling, S.A., Askari, E.: Peridynamic modeling of impact damage. In: Moody, F.J. (ed.) PVP, vol. 489, pp. 197–205. American Society of Mechanical Engineers, New York (2004) Google Scholar
  21. 21.
    Silling, S.A., Askari, E.: A meshfree method based on the peridynamic model of solid mechanics. Comput. Struct. 83, 1526–1535 (2005) CrossRefGoogle Scholar
  22. 22.
    Silling, S.A., Lehoucq, R.B.: Convergence of peridynamics to classical elasticity theory. J. Elast. 93, 13–37 (2008) CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Silling, S.A., Zimmermann, M., Abeyaratne, R.: Deformation of a peridynamic bar. J. Elast. 73, 173–190 (2003) CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Tartar, L.: Memory effects and homogenization. Arch. Ration. Mech. Anal. 111, 121–133 (1990) CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Weckner, O., Abeyaratne, R.: The effect of long-range forces on the dynamics of a bar. J. Mech. Phys. Solids 53(3), 705–728 (2005) CrossRefzbMATHADSMathSciNetGoogle Scholar
  26. 26.
    Weckner, O., Emmrich, E.: Numerical simulation of the dynamics of a nonlocal, inhomogeneous, infinite bar. J. Comput. Appl. Mech. 6(2), 311–319 (2005) zbMATHMathSciNetGoogle Scholar
  27. 27.
    Zimmermann, M.: A continuum theory with long-range forces for solids. PhD Thesis, Massachusetts Institute of Technology, Department of Mechanical Engineering (2005) Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of UtahSalt Lake CityUSA
  2. 2.Department of MathematicsLouisiana State UniversityBaton RougeUSA

Personalised recommendations