Advertisement

Journal of Elasticity

, Volume 105, Issue 1–2, pp 137–170 | Cite as

Wrinkling of a Stretched Thin Sheet

  • Eric Puntel
  • Luca Deseri
  • Eliot FriedEmail author
Article

Abstract

When a thin rectangular sheet is clamped along two opposing edges and stretched, its inability to accommodate the Poisson contraction near the clamps may lead to the formation of wrinkles with crests and troughs parallel to the axis of stretch. A variational model for this phenomenon is proposed. The relevant energy functional includes bending and membranal contributions, the latter depending explicitly on the applied stretch. Motivated by work of Cerda, Ravi-Chandar, and Mahadevan, the functional is minimized subject to a global kinematical constraint on the area of the mid-surface of the sheet. Analysis of a boundary-value problem for the ensuing Euler–Lagrange equation shows that wrinkled solutions exist only above a threshold of the applied stretch. A sequence of critical values of the applied stretch, each element of which corresponds to a discrete number of wrinkles, is determined. Whenever the applied stretch is sufficiently large to induce more than three wrinkles, previously proposed scaling relations for the wrinkle wavelength and, modulo a multiplicative factor that depends on the Poisson ratio of the sheet and the applied stretch and arises from the more general and weaker nature of geometric constraint under consideration, root-mean-square amplitude are confirmed. In contrast to the scaling relations for the wrinkle wavelength and amplitude, the applied stretch required to induce any number of wrinkles depends on the in-plane aspect ratio of the sheet. When the sheet is significantly longer than it is wide, the critical stretch scales with the fourth power of the length-to-width ratio but, when the sheet is significantly wider than it is long, the critical stretch scales with the square of that same ratio.

Keywords

Föppl–von Kármán theory Thin film Wrinkling Buckling Critical load 

Mathematics Subject Classification (2000)

74K35 74G60 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blandino, J.D., Johnson, J., Dharamsi, U.K.: Corner wrinkling of a square membrane due to symmetric mechanical loads. J. Spacecr. Rockets 39, 717–724 (2002) ADSCrossRefGoogle Scholar
  2. 2.
    Jenkins, C.H., Kalanovic, V.D., Padmanabhan, K., Faisal, S.M.: Intelligent shape control for precision membrane antennae and reflectors in space. Smart Mater. Struct. 8, 857–867 (1999) ADSCrossRefGoogle Scholar
  3. 3.
    Sakamoto, H., Park, K.C., Miyazaki, Y.: Evaluation of membrane structure designs using boundary web cables for uniform tensioning. Acta Astronaut. 60, 846–857 (2007) ADSCrossRefGoogle Scholar
  4. 4.
    Hudson, D.A., Renshaw, A.: An algorithm for the release of burn contractures of the extremities. Burns 32, 663–668 (2006) CrossRefGoogle Scholar
  5. 5.
    Lott-Crumpler, D.A., Chaudhry, H.R.: Optimal patterns for suturing wounds of complex shapes to foster healing. J. Biomech. 34, 51–58 (2001) CrossRefGoogle Scholar
  6. 6.
    Georgeu, G.A., Ross, D.: Wounds and scars. Surgery 20, 139–141 (2002) Google Scholar
  7. 7.
    Cerda, E.: Mechanics of scars. J. Biomech. 38, 1598–1603 (2005) CrossRefGoogle Scholar
  8. 8.
    Hofer, S.O.P., Mureau, M.A.M.: Improving outcomes in aesthetic facial reconstruction. Clin. Plast. Surg. 36, 345–354 (2009) CrossRefGoogle Scholar
  9. 9.
    Ueda, K., Hara, M., Okada, M., Kurokawa, N., Otani, K., Nuri, T.: Lambda incision for effective tissue expansion. J. Plast. Reconstr. Aesthet. Surg. doi: 10.1016/j.bjps.2009.09.015 (2009) Google Scholar
  10. 10.
    Stafford, C.M., Harrison, C., Beers, K.L., Karim, A., Amis, E.J., Vanlandingham, M.R., Kim, H.-C., Volksen, W., Miller, R.D., Simonyi, E.: A buckling-based metrology for measuring the elastic moduli of polymeric thin films. Nat. Mater. 3, 545–550 (2004) ADSCrossRefGoogle Scholar
  11. 11.
    Chung, J.Y., Chastek, T.Q., Fasolka, M.J., Ro, H.W., Stafford, C.M.: Quantifying residual stress in nanoscale thin polymer films via surface wrinkling. ACS Nano 3, 844–852 (2009) CrossRefGoogle Scholar
  12. 12.
    Burton, K., Taylor, D.L.: Traction forces of cytokinesis measured with optically modified elastic substrata. Nature 385, 450–454 (1997) ADSCrossRefGoogle Scholar
  13. 13.
    Harris, A.K., Wild, P., Stopak, D.: Silicone rubber substrata: a new wrinkle in the study of cell locomotion. Science 208, 177–179 (1980) ADSCrossRefGoogle Scholar
  14. 14.
    Kolaric, B., Vandeparre, H., Desprez, S., Vallee, R.A.L., Damman, P.: In situ tuning the optical properties of a cavity by wrinkling. Appl. Phys. Lett. 96, 043119 (2010) ADSCrossRefGoogle Scholar
  15. 15.
    Ohzono, T., Monobe, H., Shiokawa, K., Fujiwara, M., Shimizu, Y.: Shaping liquid on a micrometre scale using microwrinkles as deformable open channel capillaries. Soft Matter 5, 4658–4664 (2009) CrossRefADSGoogle Scholar
  16. 16.
    Wagner, H.: Ebene Blechwandträger mit sehr dünnen Stegblechen. ZFM, Z. Flugtech. Mot.luftschiffahrt 20, 200–207, 227–233, 256–262, 279–284, 306–314 (1929) Google Scholar
  17. 17.
    Wagner, H., Ballerstedt, W.: Über Zugfelder in ursprünglich gekrümmten, dünnen Blechen bei Beanspruchung durch Schubkräfte. Luftfahrtforschung 12, 70–74 (1935) Google Scholar
  18. 18.
    Wagner, H.: Ëiniges über schalenförmige Flugzeug-Bauteile. Luftfahrtforschung 13, 281–292 (1936) Google Scholar
  19. 19.
    Kondo, K.: The general solution of the flat tension field. J. Soc. Aeronaut. Sci. Nippon 5, 887–901 (1938) Google Scholar
  20. 20.
    Reissner, E.: On tension field theory. In: Proceedings of the 5th International Congress for Applied Mechanics, pp. 88–92 (1938) Google Scholar
  21. 21.
    Mansfield, E.H.: Load transfer via a wrinkled membrane. Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 316, 269–289 (1970) ADSCrossRefGoogle Scholar
  22. 22.
    Danielson, D.A., Natarajan, S.: Tension field theory and the stress in stretched skin. J. Biomech. 8, 135–142 (1975) CrossRefGoogle Scholar
  23. 23.
    Wu, C.H.: Nonlinear wrinkling of nonlinear membranes of revolution. J. Appl. Mech. 45, 533–538 (1978) ADSzbMATHCrossRefGoogle Scholar
  24. 24.
    Zak, M.: Statics of wrinkling films. J. Elast. 12, 51–63 (1982) MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Pipkin, A.C.: Continuously distributed wrinkles in fabrics. Arch. Ration. Mech. Anal. 95, 93–115 (1986) MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Steigmann, D.J., Pipkin, A.C.: Wrinkling of pressurized membranes. J. Appl. Mech. 56, 624–628 (1989) ADSzbMATHCrossRefGoogle Scholar
  27. 27.
    Steigmann, D.J.: Tension-field theory. Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 429, 141–173 (1990) MathSciNetADSzbMATHCrossRefGoogle Scholar
  28. 28.
    Hilgers, M.G., Pipkin, A.C.: Elastic sheets with bending stiffness. Q. J. Mech. Appl. Math. 45, 57–75 (1992) MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Steigmann, D.J.: Two-dimensional models for the combined bending and stretching of plates and shells based on three-dimensional linear elasticity. Int. J. Eng. Sci. 46, 654–676 (2008) MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Cerda, E., Ravi-Chandar, K., Mahadevan, L.: Thin films: Wrinkling of an elastic sheet under tension. Nature 419, 579–580 (2002) ADSCrossRefGoogle Scholar
  31. 31.
    Cerda, E., Mahadevan, L.: Geometry and physics of wrinkling. Phys. Rev. Lett. 90, 1–4 (2003) CrossRefGoogle Scholar
  32. 32.
    Coman, C.: On the applicability of tension field theory to a wrinkling instability problem. Acta Mech. 190, 57–72 (2007) zbMATHCrossRefGoogle Scholar
  33. 33.
    Wong, Y.W., Pellegrino, S.: Wrinkled membranes II: Analytical models. J. Mech. Mater. Struct. 1, 27–61 (2006) CrossRefGoogle Scholar
  34. 34.
    Wong, Y.W., Pellegrino, S.: Wrinkled membranes I: Experiments. J. Mech. Mater. Struct. 1, 3–25 (2006) CrossRefGoogle Scholar
  35. 35.
    Wong, Y.W., Pellegrino, S.: Wrinkled membranes III: Numerical simulations. J. Mech. Mater. Struct. 1, 63–95 (2006) CrossRefGoogle Scholar
  36. 36.
    Balmforth, N.J., Craster, R.V., Slim, A.C.: On the buckling of elastic plates. Q. J. Mech. Appl. Math. 61, 267–289 (2008) MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    Landau, L.D., Lifschitz, E.M.: Theory of Elasticity. Pergamon, New York (1970) Google Scholar
  38. 38.
    Bazant, Z.P., Cedolin, L.: Stability of Structures Elastic, Inelastic, Fracture, and Damage Theories. Dover, New York (2003) Google Scholar
  39. 39.
    Podio-Guidugli, P.: A primer in elasticity. J. Elast. 58, 1–104 (2000) MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    Pipkin, A.C.: Constraints in linearly elastic materials. J. Elast. 6, 179–193 (1976) MathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    Hetényi, M.: Beams on Elastic Foundation. University of Michigan Press, Ann Arbor (1946) Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Dipartimento di Georisorse e TerritorioUniversità di UdineUdineItaly
  2. 2.Dipartimento di Ingegneria Meccanica e StrutturaleUniversità di TrentoTrentoItaly
  3. 3.Department of Mechanical EngineeringMcGill UniversityMontréalCanada

Personalised recommendations