Advertisement

Journal of Elasticity

, Volume 88, Issue 2, pp 151–184 | Cite as

Peridynamic States and Constitutive Modeling

  • S. A. Silling
  • M. Epton
  • O. Weckner
  • J. Xu
  • E. Askari
Article

Abstract

A generalization of the original peridynamic framework for solid mechanics is proposed. This generalization permits the response of a material at a point to depend collectively on the deformation of all bonds connected to the point. This extends the types of material response that can be reproduced by peridynamic theory to include an explicit dependence on such collectively determined quantities as volume change or shear angle. To accomplish this generalization, a mathematical object called a deformation state is defined, a function that maps any bond onto its image under the deformation. A similar object called a force state is defined, which contains the forces within bonds of all lengths and orientation. The relation between the deformation state and force state is the constitutive model for the material. In addition to providing a more general capability for reproducing material response, the new framework provides a means to incorporate a constitutive model from the conventional theory of solid mechanics directly into a peridynamic model. It also allows the condition of plastic incompressibility to be enforced in a peridynamic material model for permanent deformation analogous to conventional plasticity theory.

Keywords

Peridynamic Material model Constitutive model Nonlocal elasticity Fracture Plastic flow 

Mathematics Subject Classifications (2000)

74A05 74A20 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Silling, S.A.: Reformulation of elasticity theory for discontinuities and long-range forces. J. Mech. Phys. Solids 48, 175–209 (2000)zbMATHCrossRefGoogle Scholar
  2. 2.
    Silling, S.A., Bobaru, F.: Peridynamic modeling of membranes and fibers. Int. J. Non-linear Mech. 40, 395–409 (2005)zbMATHCrossRefGoogle Scholar
  3. 3.
    Kunin, I.A.: Elastic Media with Microstructure I: One-dimensional Models, pp. 27. Springer, Berlin (1982)zbMATHGoogle Scholar
  4. 4.
    Rogula, D.: Nonlocal Theory of Material Media, pp. 137–149 and 243–278. Springer, Berlin (1982)zbMATHGoogle Scholar
  5. 5.
    Silling, S.A., Zimmermann, M., Abeyaratne, R.: Deformation of a peridynamic bar. J. Elast. 73, 173–190 (2003)zbMATHCrossRefGoogle Scholar
  6. 6.
    Weckner, O., Abeyaratne, R.: The effect of long-range forces on the dynamics of a bar. J. Mech. Phys. Solids 53, 705–728 (2005)zbMATHCrossRefGoogle Scholar
  7. 7.
    Dayal, K., Bhattacharya, K.: Kinetics of phase transformations in the peridynamic formulation of solid mechanics. J. Mech. Phys. Solids 54, 1811–1842 (2006)CrossRefADSGoogle Scholar
  8. 8.
    Gerstle, W., Sau, N.: Peridynamic modeling of concrete structures. In: Li, Leung, Willam, Billington (eds.) Proceedings of the 5th International Conference on Fracture Mechanics of Concrete Structures, Ia-FRAMCOS, vol. 2, pp. 949–956 (2004)Google Scholar
  9. 9.
    Gerstle, W., Sau, N., Silling, S.: Peridynamic modeling of plain and reinforced concrete structures. In: 18th International Conference on Structural Mechanics in Reactor Technology (SMiRT 18), Beijing, China, SMiRT18-B01-2 (2005)Google Scholar
  10. 10.
    Gerstle, W., Sau, N., Silling, S.: Peridynamic modeling of concrete structures. Nucl. Eng. Des. 237, 1250–1258 (2007)CrossRefGoogle Scholar
  11. 11.
    Silling, S.A., Askari, E.: Peridynamic modeling of impact damage. In: Moody, F.J. (ed.) Problems Involving Thermal-Hydraulics, Liquid Sloshing, and Extreme Loads on Structures, PVP-vol. 489, pp. 197–205. American Society of Mechanical Engineers, New York (2004)Google Scholar
  12. 12.
    Askari, A., Xu, J., Silling, S.: Peridynamic analysis of damage and failure in composites. In: 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, AIAA-2006-88 (2006)Google Scholar
  13. 13.
    Kilic, B., Madenci, E., Ambur, D.R.: Analysis of brazed single-lap joints using the peridynamics theory. In: 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Newport, Rhode Island, AIAA-2006-2267 (2006)Google Scholar
  14. 14.
    Bobaru, F., Silling, S.A.: Peridynamic 3D models of nanofiber networks and carbon nanotube-reinforced composites. In: Materials Processing and Design: Modeling, Simulation, and Applications – NUMIFORM 2004 – American Institute of Physics Conference Proceedings, vol. 712, pp. 1565–1570 (2004)Google Scholar
  15. 15.
    Silling, S.A.: Dynamic fracture modeling with a meshfree peridynamic code. In: Bathe, K.J. (ed.) Computational Fluid and Solid Mechanics 2003, pp. 641–644. Elsevier, Amsterdam (2003)Google Scholar
  16. 16.
    Silling, S.A., Askari, E.: A meshfree method based on the peridynamic model of solid mechanics. Comput. Struct. 83, 1526–1535 (2005)CrossRefGoogle Scholar
  17. 17.
    Weckner, O., Emmrich, E.: Numerical simulation of the dynamics of a nonlocal, inhomogeneous, infinite bar. J. Comput. Appl. Mech. 6, 311–319 (2005)zbMATHGoogle Scholar
  18. 18.
    Knowles, J.K.: Linear Vector Spaces and Cartesian Tensors, pp. 1–9. Oxford University Press, New York (1998)zbMATHGoogle Scholar
  19. 19.
    Malvern, L.E.: Introduction to the Mechanics of a Continuous Medium. Englewood Cliffs, p. 359. Prentice-Hall, New Jersey (1969)Google Scholar
  20. 20.
    Warren, T.L., Silling, S.A., Askari, E., Weckner, O., Epton, M., Xu, J.: A non-ordinary sate based peridynamic method using an isotropic elastic-plastic constitutive model, (2007) (in preparation)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • S. A. Silling
    • 1
  • M. Epton
    • 2
  • O. Weckner
    • 2
  • J. Xu
    • 2
  • E. Askari
    • 2
  1. 1.Multiscale Dynamic Material Modeling DepartmentSandia National LaboratoriesAlbuquerqueUSA
  2. 2.Math GroupThe Boeing CompanyBellevueUSA

Personalised recommendations