Journal of Elasticity

, Volume 86, Issue 2, pp 155–172 | Cite as

A Material Momentum Balance Law for Rods



A material momentum balance law is presented in this paper where it is also specialized for a variety of rod and string theories. The local form of the law is assumed to be identically satisfied, while the jump condition provides an extra equation which is often needed to solve problems involving the application of rod and string theories. The balance law is also related to several existing conservation laws for strings and rods, including Kelvin’s circulation theorem. A novel identity for the singular sources at a discontinuity is also established.

Key words

rod theory material forces configurational forces Cosserat theory of rods conservation laws 

Mathematics Subject Classifications (2000)

46.05 46.25 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abeyaratne, R., Knowles, J.K.: Kinetic relations and the propagation of phase boundaries in solids. Arch. Ration. Mech. Anal. 114, 119–154 (1991)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Abeyaratne, R., Knowles, J.K.: Nucleation, kinetics and admissibility criteria for propagating phase boundaries. In: Dunn, J.E., Fosdick, R., Slemrod, M. (eds.) Shock Induced Transitions and Phase Structures in Generalized Media, pp. 1–33. Springer, Berlin Heidelberg New York (1993)Google Scholar
  3. 3.
    Antman, S.S.: Nonlinear Problems of Elasticity. Springer, Berlin Heidelberg New York (1995)MATHGoogle Scholar
  4. 4.
    Bilek, Z.J., Burns, S.J.: Crack propagation in wedged double cantilevered beam specimens. J. Mech. Phys. Solids 22, 85–95 (1974)MATHCrossRefADSGoogle Scholar
  5. 5.
    Burridge, R., Keller, J.B.: Peeling, slipping and cracking: some one-dimensional free-boundary problems in mechanics. SIAM Rev. 20(1), 31–61 (1978)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Cermelli, P., Fried, E.: The influence of inertia on the configurational forces in a solid. Proc. R. Soc. Lond. 453A, 1915–1927 (1997)ADSMathSciNetGoogle Scholar
  7. 7.
    Cermelli, P., Fried, E.: The evolution equation for a disclination in a nematic liquid crystal. Proc. R. Soc. Lond. 458A, 1–20 (2002)ADSMathSciNetGoogle Scholar
  8. 8.
    Dichmann, D.J., Maddocks, J.H., Pego, R.L.: Hamiltonian dynamics of an elastica and the stability of solitary waves. Arch. Ration. Mech. Anal. 135, 357–396 (1996)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Eshelby, J.D.: Energy relations and the energy-momentum tensor in continuum mechanics. In: Kanninen, M.F., Adler, W.F., Rosenfeld, A.R., Jaffee, R.I. (eds.) Inelastic Behavior of Solids, pp. 77–114. McGraw-Hill, New York (1970)Google Scholar
  10. 10.
    Eshelby, J.D.: The calculation of energy release rates. In: Sih, G.C., van Elst, H.C., Broek, D. (eds.) Future Prospects of Fracture Mechanics, pp. 77–115. McGraw-Hill, New York (1975)Google Scholar
  11. 11.
    Eshelby, J.D.: The energy-momentum tensor of complex continua. In: Kröner, E., Anthony, K.H. (eds.) Continuum Models of Discrete Systems, pp. 651–665. University of Waterloo Press, Waterloo (1980)Google Scholar
  12. 12.
    Fomethe, A., Maugin, G.A.: On crack mechanics of hard ferromagnets. Int. J. Non.-Linear Mech. 33(1), 85–95 (1998)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Gelfand, I.M., Fomin, S.V.: Calculus of Variations. Prentice-Hall, New Jersey (1963)Google Scholar
  14. 14.
    Glassmaker, N.J., Hui, C.Y.: Elastica solution for a nanotube formed by self-adhesion of a folded thin film. J. Appl. Physi. 96(6), 3429–3434 (2004)CrossRefADSGoogle Scholar
  15. 15.
    Green, A.E., Laws, N.: Remarks on the theory of rods. J. Elast. 3, 179–184 (1973)CrossRefGoogle Scholar
  16. 16.
    Green, A.E., Naghdi, P.M.: On thermal effects in the theory of rods. Int. J. Solids Struct. 15, 829–853 (1979)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Green, A.E., Naghdi, P.M., Wenner, M.L.: On the theory of rods: II. Developments by direct approach. Proc. R. Soc.. Lond. 337A, 485–507 (1974)ADSMathSciNetGoogle Scholar
  18. 18.
    Gurtin, M.E.: The nature of configurational forces. Arch. Ration. Mech. Anal. 131, 67–100 (1995)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Gurtin, M.E.: Configurational Forces as Basic Concepts in Continuum Physics. Springer, Berlin Heidelberg New York (2000)Google Scholar
  20. 20.
    Healey, T.J.: Stability of axial motions of nonlinearly elastic loops. Z. Angew. Math. Phys. 47(5), 809–816 (1996)MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Kienzler, R., Hermann, G.: On existence and completeness of conservation laws associated with elementary beam theory. Int. J. Solids Struct. 22(7), 789–796 (1986)MATHCrossRefGoogle Scholar
  22. 22.
    Kienzler, R., Hermann, G.: On material forces in elementary beam theory. ASME J. Appl. Mech. 53, 561–564 (1986)CrossRefGoogle Scholar
  23. 23.
    Kienzler, R., Hermann, G.: Mechanics in Material Space with Applications in Defect and Fracture Mechanics. Springer, Berlin Heidelberg New York (2000)MATHGoogle Scholar
  24. 24.
    Kienzler, R., Hermann, G.: Fracture mechanics within the theory of strength-of-materials. In: Steinmann, P., Maugin, G.A. (eds.) Mechanics of Material Forces, pp. 193–202. Springer, Berlin Heidelberg New York (2005)CrossRefGoogle Scholar
  25. 25.
    Maddocks, J.H., Dichmann, D.J.: Conservation laws in the dynamics of rods. J. Elast. 34, 83–96 (1994)MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Majidi, C.: Remarks on formulating an adhesion problem using Euler’s elastica. Mech. Res. Commun. 34, 85–90 (2007)CrossRefMathSciNetMATHGoogle Scholar
  27. 27.
    Marsden, J.E., Hughes, T.J.R.: Mathematical Foundations of Elasticity. Prentice-Hall, New Jersey (1983)MATHGoogle Scholar
  28. 28.
    Marshall, J.S., Naghdi, P.M.: A thermodynamical theory of turbulence. I. Basic developments. Philos. Trans. R. Soc. Lond. A327, 415–448 (1989)ADSMathSciNetGoogle Scholar
  29. 29.
    Maugin, G.A.: Material forces: concepts and applications. ASME Appl. Mech. Rev. 48(5), 213–245 (1995)CrossRefGoogle Scholar
  30. 30.
    Maugin, G.A., Epstein, M., Trimarco, C.: Pseudomomentum and material forces in inhomogeneous materials: application to the fracture of electromagnetic materials in electromagnetic fields. Int. J. Solids Struct. 29(14/15), 1889–1900 (1992)CrossRefMathSciNetMATHGoogle Scholar
  31. 31.
    Naghdi, P.M.: Finite deformation of elastic rods and shells. In: Carlson, D.E., Shield, R.T. (eds.) Proceedings of the IUTAM Symposium on Finite Elasticity, Bethlehem PA 1980, pp. 47–104. Martinus Nijhoff, The Hague, The Netherlands (1982)Google Scholar
  32. 32.
    O’Reilly, O.M.: On steady motions of a drawn cable. ASME J. Appl. Mech. 63(1), 180–189 (1996)MATHMathSciNetCrossRefGoogle Scholar
  33. 33.
    O’Reilly, O.M.: The energy jump condition for thermomechanical media in the presence of configurational forces. Accepted for publication in Contin. Mech. Thermodyn. (2006)Google Scholar
  34. 34.
    O’Reilly, O.M., Turcotte, J.S.: Some remarks on invariance requirements for constrained rods. Math. Mech. Solids 1, 343–348 (1996)MATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    O’Reilly, O.M., Varadi, P.C.: A treatment of shocks in one-dimensional thermomechanical media. Contin. Mech. Thermodyn. 11(6), 339–352 (1999)MATHCrossRefADSMathSciNetGoogle Scholar
  36. 36.
    O’Reilly, O.M., Varadi, P.C.: A treatment of shocks in thermoelastic rods. In: Casey, J., Abeyaratne, R. (eds.) Finite Thermoelasticity. ASME AMD, vol. 236, pp. 105–115 (1999)Google Scholar
  37. 37.
    O’Reilly, O.M., Varadi, P.C.: On some peculiar aspects of axial motions of closed loops of string in the presence of a singular supply of momentum. ASME J. Appl. Mech. 71(4), 541–545 (2004)MATHCrossRefGoogle Scholar
  38. 38.
    Plaut, R.H., Dalrymple, A.J., Dillard, D.A.: Effect of work on contact of an elastica with a flat surface. J. Adhes. Sci. Technol. 15, 565–581 (2001)CrossRefGoogle Scholar
  39. 39.
    Plaut, R.H., Williams, N.H., Dillard, D.A.: Elastica analysis of the loop tack adhesion test for pressure sensitive adhesives. J. Adhes. 76, 37–53 (2001)CrossRefGoogle Scholar
  40. 40.
    Podio-Guidugli, P.: Configurational balances via variational principles. Interfaces and Free Bound. 3, 223–232 (2001)MATHMathSciNetGoogle Scholar
  41. 41.
    Podio-Guidugli, P.: Peeling tapes. In: Steinmann, P., Maugin, G.A. (eds.) Mechanics of Material Forces, pp. 253–260. Springer, Berlin Heidelberg New York (2005)CrossRefGoogle Scholar
  42. 42.
    Purohit, P.K., Bhattacharya, K.: Dynamics of strings made of phase-transforming materials. J. Mech. Phys. Solids 51, 393–424 (2003)MATHCrossRefMathSciNetADSGoogle Scholar
  43. 43.
    Reeken, M.: On the equation of motion of a chain. Math. Z. 155(3), 219–237 (1977)MATHCrossRefMathSciNetGoogle Scholar
  44. 44.
    Rubin, M.B.: Cosserat Theories: Shells, Rods, and Points. Kluwer, Dordrecht, The Netherlands (2000)MATHGoogle Scholar
  45. 45.
    Troutman, J.L.: Variational Calculus and Optimal Control: Optimization with Elementary Convexity, 2nd edn. Springer, Berlin Heidelberg New York (1996)MATHGoogle Scholar
  46. 46.
    Truskinovsky, L.: Dynamics of non-equilibrium phase boundaries in a heat conducting nonlinear elastic medium. J. Appl. Math. Mech. 51(6), 777–784 (1987)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUniversity of CaliforniaBerkeleyU.S.A.

Personalised recommendations