Journal of Elasticity

, Volume 85, Issue 1, pp 45–63 | Cite as

On Poisson’s Ratio in Linearly Viscoelastic Solids

  • R. S. LakesEmail author
  • A. Wineman


Poisson’s ratio in viscoelastic solids is in general a time dependent (in the time domain) or a complex frequency dependent quantity (in the frequency domain). We show that the viscoelastic Poisson’s ratio has a different time dependence depending on the test modality chosen; interrelations are developed between Poisson’s ratios in creep and relaxation. The difference, for a moderate degree of viscoelasticity, is minor. Correspondence principles are derived for the Poisson’s ratio in transient and dynamic contexts. The viscoelastic Poisson’s ratio need not increase with time, and it need not be monotonic with time. Examples are given of material microstructures which give rise to designed time dependent Poisson’s ratios.

Mathematics Subject Classifications (2000)

P21018 C32070 T15001 

Key words

Poisson’s ratio linearly viscoelastic solids correspondence principle time dependence frequencey dependence 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pipkin, A.C.: Lectures on Viscoelasticity Theory. Springer, Berlin Heidelberg New York (1972)zbMATHGoogle Scholar
  2. 2.
    Adams, R.D., Peppiatt, N.A.: Effect of Poisson’s ratio strains in adherends on stresses of an idealized lap joint. J. Strain Anal. 8, 134–139 (1973)CrossRefGoogle Scholar
  3. 3.
    Ferry, J.D.: Viscoelastic Properties of Polymers, 2nd edn. Wiley, New York (1970)Google Scholar
  4. 4.
    Lakes, R.S.: Viscoelastic Solids. CRC, Boca Raton, Florida (1998)Google Scholar
  5. 5.
    Hilton, H.H.: Implications and constraints of time-independent Poisson’s ratios in linear isotropic and anisotropic viscoelasticity. J. Elast. 63, 221–251 (2001)zbMATHCrossRefGoogle Scholar
  6. 6.
    Tschoegl, N.W., Knauss, W., Emri, I.: Poisson’s ratio in linear viscoelasticity – A critical review. Mech. Time-Depend. Mater. 6, 3–51 (2002)CrossRefGoogle Scholar
  7. 7.
    Lu, H., Zhang, X., Knauss, W.G.: Uniaxial, shear, and Poisson relaxation and their conversion to bulk relaxation. Polym. Compos. 18, 211–222 (1997)CrossRefGoogle Scholar
  8. 8.
    Kugler, H., Stacer, R., Steimle, C.: Direct measurement of Poisson’s ratio in elastomers. Rubber Chem. Technol. 63, 473–487 (1990)Google Scholar
  9. 9.
    Sokolnikoff, I.S.: Mathematical Theory of Elasticity. Krieger, Malabar, Florida (1983)zbMATHGoogle Scholar
  10. 10.
    Read Jr., W.T.: Stress analysis for compressible viscoelastic materials. J. Appl. Phys. 21, 671–674 (1950)zbMATHCrossRefADSMathSciNetGoogle Scholar
  11. 11.
    Gross, B.: Mathematical Structure of the Theories of Viscoelasticity. Hermann, Paris (1968)Google Scholar
  12. 12.
    Timoshenko, S.P., Goodier, J.N.: Theory of Elasticity. McGraw-Hill, London (1982)Google Scholar
  13. 13.
    Chen, C.P., Lakes, R.S.: Holographic study of conventional and negative Poisson’s ratio metallic foams: Elasticity, yield, and micro-deformation. J. Mater. Sci. 26, 5397–5402 (1991)CrossRefGoogle Scholar
  14. 14.
    Gurtin, M.E., Sternberg, E.: On the linear theory of viscoelasticity. Arch. Ration. Mech. Anal. 11, 291–356 (1962)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Anderson, D.L.: Theory of the Earth. Blackwell, Boston, Massachusetts (1989)Google Scholar
  16. 16.
    Gibson, L.J., Ashby, M.F.: Cellular Solids, 2nd edn. Cambridge University Press, Cambridge, UK (1997)Google Scholar
  17. 17.
    Weiner, J.H.: Statistical Mechanics of Elasticity. Wiley, New York (1983)zbMATHGoogle Scholar
  18. 18.
    Kolpakov, A.G.: On the determination of the averaged moduli of elastic gridworks. Prikl. Mat. Meh. 59, 969–977 (1985)MathSciNetGoogle Scholar
  19. 19.
    Lakes, R.S.: Advances in negative Poisson’s ratio materials. Adv. Mater. (Weinheim, Germany) 5, 293–296 (1993)CrossRefGoogle Scholar
  20. 20.
    Lakes, R.S.: Foam structures with a negative Poisson’s ratio. Science 235, 1038–1040 (1987)CrossRefADSGoogle Scholar
  21. 21.
    Lakes, R.S.: The time dependent Poisson’s ratio of viscoelastic cellular materials can increase or decrease. Cell. Polym. 11, 466–469 (1992)Google Scholar
  22. 22.
    Biot, M.A.: General theory of three-dimensional consolidation. J. Appl. Phys. 12, 155–164 (1941)CrossRefADSGoogle Scholar
  23. 23.
    Zener, C.: Internal friction in solids. I. Theory of internal friction in reeds. Phys. Rev. 52, 230–235 (1937)CrossRefADSGoogle Scholar
  24. 24.
    Nye, J.F.: Physical Properties of Crystals. Oxford University Press, London, UK (1976)Google Scholar
  25. 25.
    Zener, C., Otis, W., Nuckolls, R.: Internal friction in solids. III. Experimental demonstration of thermoelastic internal friction. Phys. Rev. 53, 100–101 (1938)CrossRefADSGoogle Scholar
  26. 26.
    Christensen, R.M.: Restrictions upon viscoelastic relaxation functions and complex moduli. Trans. Soc. Rheol. 16, 603–614 (1972)CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V. 2006

Authors and Affiliations

  1. 1.Department of Engineering Physics, Engineering Mechanics ProgramUniversity of Wisconsin – MadisonMadisonUSA
  2. 2.Department of Mechanical EngineeringUniversity of MichiganAnn ArborUSA

Personalised recommendations