Skip to main content
Log in

Local maladaptation of the anther-smut fungus parasitizing Dianthus carthusianorum

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Pathogens are generally expected to evolve faster than their hosts and are therefore likely to be locally adapted. However, some pathogens might lag behind in the co-evolutionary arms race because they do not have some of the advantages shared by most other pathogens (e.g., high mutation or recombination rates, short generation time, high dispersal ability). This is the case of Microbotryum fungi that cause the anther smut disease in plants of the family Caryophyllaceae. We investigated the patterns of local adaptation and maladaptation in Microbotryum carthusianorum and its host plant Dianthus carthusianorum. We performed a full cross-inoculation experiment using half-sib plant families and fungal samples originating from three naturally infected populations in the Czech Republic. We specifically asked, which components of pathogen fitness (i.e., infectivity and host manipulation) are affected by local (mal)adaptation. The pathogen was on average 1.6 times more successful in infecting plants from foreign populations compared to plants from its home population. Once the infection was successful, the pathogen accelerated the plant’s flowering and thus increased the opportunity for transmission to new hosts. However, the level of manipulation of host flowering did not differ between home and foreign populations. This study showed that the pathogen’s infectivity followed a clear pattern of local maladaptation, whereas the host manipulation did not. Our study taken together with previous studies of a related anther smut species reveals the pervasiveness of local maladaptation in this group of pathogens that arises as the result of their restricted gene flow and reduced recombination rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alexander, H. M., & Antonovics, J. (1988). Disease spread and population dynamics of anther-smut infection of Silene alba caused by the fungus Ustilago violacea. The Journal of Ecology, 76(1), 91–104.

    Article  Google Scholar 

  • Alexander, H. M., & Antonovics, J. (1995). Spread of anther-smut disease (Ustilago violacea) and character correlations in a genetically variable experimental population of Silene alba. Journal of Ecology, 83(5), 783–794.

    Article  Google Scholar 

  • Alexander, H. M., Antonovics, J., & Kelly, A. W. (1993). Genotypic variation in plant disease resistance--physiological resistance in relation to field disease transmission. Journal of Ecology, 81(2), 325–333.

    Article  Google Scholar 

  • Baker, H. G. (1947). Infection of species of Melandrium by Ustilago violaceae (Pers.) Fuckel and the transmission of the resultant disease. Annals of Botany, 11(43), 333–348.

    Article  Google Scholar 

  • Bates, D., Maechler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using {lme4}. Journal of Statistical Software, 67(1), 1–48.

    Article  Google Scholar 

  • Biere, A., & Antonovics, J. (1996). Sex-specific costs of resistance to the fungal pathogen Ustilago violacea (Microbotryum violaceum) in Silene alba. Evolution, 50(3), 1098–1110.

    PubMed  Google Scholar 

  • Biere, A., & Honders, S. C. (1996). Impact of flowering phenology of Silene alba and S . dioica on susceptibility to fungal infection and seed predation. Oikos, 77(3l), 467–480.

    Article  Google Scholar 

  • Biere, A., & Honders, S. C. (1998). Anther smut transmission in Silene latifolia and Silene dioica - impact of host traits, disease frequency and host density. International Journal of Plant Sciences, 159(2), 228–235.

    Article  Google Scholar 

  • Bloch, D., Werdenberg, N., & Erhardt, A. (2006). Pollination crisis in the butterfly-pollinated wild carnation Dianthus carthusianorum? New Phytologist, 169(4), 699–706.

    Article  PubMed  Google Scholar 

  • Bolker, B. M., Brooks, M. E., Clark, C. J., Geange, S. W., Poulsen, J. R., Stevens, M. H. H., & White, J. S. S. (2009). Generalized linear mixed models: A practical guide for ecology and evolution. Trends in Ecology and Evolution, 24(3), 127–135.

    Article  PubMed  Google Scholar 

  • Bruns, E., Hood, M. E., & Antonovics, J. (2015). Rate of resistance evolution and polymorphism in long- and short-lived hosts. Evolution, 69(2), 551–560.

    Article  PubMed  Google Scholar 

  • Bruns, E., Antonovics, J., Carasso, V., & Hood, M. E. (2017). Transmission and temporal dynamics of anther-smut disease (Microbotryum) on alpine carnation (Dianthus pavonius). Journal of Ecology, 105, 1413–1424.

    Article  CAS  Google Scholar 

  • Bruns, E., Pierce, L., Antonovics, J., & Hood, M. E. (2020). Vector preference and heterogeneity in host sex ratio can affect pathogen spread in natural plant populations. Ecology, 102(3), e03246.

  • Buckling, A., & Rainey, P. B. (2002). Antagonistic coevolution between a bacterium and a bacteriophage. Proceedings of the Royal Society B: Biological Sciences, 269(1494), 931–936.

    Article  PubMed  PubMed Central  Google Scholar 

  • Buono, L., López-Villavicencio, M., Shykoff, J. A., Snirc, A., & Giraud, T. (2014). Influence of multiple infection and relatedness on virulence: Disease dynamics in an experimental plant population and its castrating parasite. PLoS One, 9(6), e98526.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Burdon, J. J. (1987). Diseases and plant population biology. Cambridge: Cambridge University Press.

    Google Scholar 

  • R Core Team. (2012). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.

  • Denchev, C. M., Giraud, T., & Hood, M. E. (2009). Three new species of anthericolous smut fungi on Caryophyllaceae. Mycologia Balcanica, 6, 79–84.

    Google Scholar 

  • Ebert, D., & Hamilton, W. D. (1996). Sex against virulence: The coevolution of parasitic diseases. Trends in Ecology & Evolution, 11(2), 79–82.

    Article  CAS  Google Scholar 

  • Ericson, L., Burdon, J. J., & Müller, W. J. (2002). The rust pathogen Triphragmium ulmariae as a selective force affecting its host, Filipendula ulmaria. Journal of Ecology, 90(1), 167–178.

    Article  Google Scholar 

  • Feurtey, A., Gladieux, P., Hood, M. E., Snirc, A., Cornille, A., Rosenthal, L., & Giraud, T. (2016). Strong phylogeographic co-structure between the anther-smut fungus and its white campion host. New Phytologist, 212(3), 668–679.

    Article  CAS  PubMed  Google Scholar 

  • Gandon, S., & Michalakis, Y. (2002). Local adaptation, evolutionary potential and host-parasite coevolution: Interactions between migration, mutation, population size and generation time. Journal of Evolutionary Biology, 15(3), 451–462.

    Article  Google Scholar 

  • Gandon, S., Capowiez, Y., Dubois, Y., Michalakis, Y., & Olivieri, I. (1996). Local adaptation and gene-for-gene coevolution in a metapopulation model. Proceedings of the Royal Society B: Biological Sciences, 263(1373), 1003–1009.

    Article  Google Scholar 

  • Gibson, W. (2015). Liaisons dangereuses: Sexual recombination among pathogenic trypanosomes. Research in Microbiology, 166(6), 459–466.

    Article  CAS  PubMed  Google Scholar 

  • Giraud, T., Jonot, O., & Shykoff, J. A. (2005). Selfing propensity under choice conditions in a parasitic fungus, Microbotryum violaceum, and parameters influencing infection success in artificial inoculations. International Journal of Plant Sciences, 166(4), 649–657.

    Article  Google Scholar 

  • Greischar, M. A., & Koskella, B. (2007). A synthesis of experimental work on parasite local adaptation. Ecology Letters, 10(5), 418–434.

    Article  PubMed  Google Scholar 

  • Hood, M. E., Antonovics, J., Wolf, M., Stern, Z. L., Giraud, T., & Abbate, J. L. (2019). Sympatry and interference of divergent Microbotryum pathogen species. Ecology and Evolution, 9(9), 5457–5467.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jennersten, O. (1983). Butterfly visitors as vectors of Ustilago violacea spores between caryophyllaceous plants. Oikos, 40(1), 125–130.

    Article  Google Scholar 

  • Jennersten, O. (1988). Insect dispersal of fungal disease: Effects of Ustilago infection on pollinator attraction in Viscaria vulgaris. Oikos, 51(2), 163–170.

    Article  Google Scholar 

  • Kaltz, O., & Shykoff, J. A. (1998). Local adaptation in host–parasite systems. Heredity, 81(May), 361–370.

    Article  Google Scholar 

  • Kaltz, O., Gandon, S., Michalakis, Y., & Shykoff, J. A. (1999). Local maladaptation in the anther-smut fungus Microbotryum violaceum to its host plant Silene latifolia: Evidence from a cross-inoculation experiment. Evolution, 53(2), 395–407.

    PubMed  Google Scholar 

  • Kemler, M., Martín, M. P., Telleria, M. T., Schäfer, A. M., Yurkov, A., & Begerow, D. (2013). Contrasting phylogenetic patterns of anther smuts (Pucciniomycotina: Microbotryum) reflect phylogenetic patterns of their caryophyllaceous hosts. Organisms Diversity and Evolution, 13(2), 111–126.

    Article  Google Scholar 

  • Koupilová, K. (2017). Ekologie patosystému květní sněti u druhu Dianthus carthusianorum (ecology of the pathosystem of anther smut on Dianthus carthusianorum). Diploma thesis. Charles University.

  • Kovanda, M. (1990). Dianthus. In S. Hejný & B. Slavík (Eds.), Květena České republiky 2 (pp. 200–213). Praha: Academia.

    Google Scholar 

  • Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. B. (2017). lmerTest package: Tests in linear mixed effects models. Journal of Statistical Software, 82(13), 1–26.

    Article  Google Scholar 

  • Le Gac, M., Hood, M. E., Fournier, E., & Giraud, T. (2007). Phylogenetic evidence of host-specific cryptic species in the anther smut fungus. Evolution, 61(1), 15–26.

    Article  PubMed  CAS  Google Scholar 

  • Lion, S., & Gandon, S. (2015). Evolution of spatially structured host-parasite interactions. Journal of Evolutionary Biology, 28(1), 10–28.

    Article  CAS  PubMed  Google Scholar 

  • Marr, D. L., & Delph, L. F. (2005). Spatial and temporal pattern of a pollinator-transmitted pathogen in a long-lived perennial, Silene acaulis. Evolutionary Ecology Research, 7, 335–352.

    Google Scholar 

  • McArt, S. H., Koch, H., Irwin, R. E., & Adler, L. S. (2014). Arranging the bouquet of disease: Floral traits and the transmission of plant and animal pathogens. Ecology Letters, 17(5), 624–636.

    Article  PubMed  Google Scholar 

  • Nakagawa, S., & Schielzeth, H. (2013). A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods in Ecology and Evolution, 4(2), 133–142.

    Article  Google Scholar 

  • Niemi, L., Wennström, A., Hjältén, J., Waldmann, P., & Ericson, L. (2006). Spatial variation in resistance and virulence in the host-pathogen system Salix triandra-Melampsora amygdalinae. Journal of Ecology, 94(5), 915–921.

    Article  Google Scholar 

  • Ochman, H., Lawrence, J. G., & Groisman, E. (2000). Lateral gene transfer and the nature of bacterial. Nature, 405, 299–304.

    Article  CAS  PubMed  Google Scholar 

  • Oppliger, A., Vernet, R., & Baez, M. (1999). Parasite local maladaptation in the Canarian lizard Gallotia galloti (Reptilia: Lacertidae) parasitized by haemogregarian blood parasite. Journal of Evolutionary Biology, 12(5), 951–955.

    Article  Google Scholar 

  • Parker, M. A. (1989). Disease impact and local genetic diversity in the clonal plant Podophyllum peltatum. Evolution, 43(3), 540–547.

    Article  PubMed  Google Scholar 

  • Petit, E., Silver, C., Cornille, A., Gladieux, P., Rosenthal, L., Bruns, E., Yee, S., Antonovics, J., Giraud, T., & Hood, M. E. (2017). Co-occurrence and hybridization of anther-smut pathogens specialized on Dianthus hosts. Molecular Ecology, 26(7), 1877–1890.

    Article  PubMed  PubMed Central  Google Scholar 

  • Refrégier, G., Le Gac, M., Jabbour, F., Widmer, A., Shykoff, J. A., Yockteng, R., Hood, M. E., & Giraud, T. (2008). Cophylogeny of the anther smut fungi and their caryophyllaceous hosts: Prevalence of host shifts and importance of delimiting parasite species for inferring cospeciation. BMC Evolutionary Biology, 8(100), 100.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Roche, B. M., Alexander, H. M., & Maltby, A. D. (1995). Dispersal and disease gradients of anther-smut infection of Silene Alba at different life stages. Ecology, 76(6), 1863–1871.

    Article  Google Scholar 

  • Roslin, T., Laine, A. L., & Gripenberg, S. (2007). Spatial population structure in an obligate plant pathogen colonizing oak Quercus robur. Functional Ecology, 21(6), 1168–1177.

    Article  Google Scholar 

  • Satterthwaite, F. E. (1946). An approximate distribution of estimates of variance components. Biometrics Bulletin, 2(6), 110–114.

    Article  CAS  PubMed  Google Scholar 

  • Schäfer, A. M., Kemler, M., Bauer, R., & Begerow, D. (2010). The illustrated life cycle of Microbotryum on the host plant Silene latifolia. Botany, 88(10), 875–885.

    Article  Google Scholar 

  • Shykoff, J. A., & Kaltz, O. (1997). Effects of the anther smut fungus Microbotryum violaceum on host life history patterns in Silene latifolia (Caryophyllaceae). International Journal of Plant Sciences, 158(2), 164–171.

    Article  Google Scholar 

  • Shykoff, J. A., & Kaltz, O. (1998). Phenotypic changes in hosts plants diseased by Microbotryum violaceum: Parasite manipulation, side-effects, and trade-offs. International Journal of Plant Sciences, 159(2), 236–243.

    Article  Google Scholar 

  • Springer, Y. P. (2007). Clinal resistance structure and pathogen local adaptation in a serpentine flax-flax rust interaction. Evolution, 61(8), 1812–1822.

    Article  PubMed  Google Scholar 

  • Thrall, P. H., & Jarosz, A. M. (1994). Host-pathogen dynamics in experimental populations of Silene alba and Ustilago violacea. I. Ecological and genetic determinants of disease spread. Journal of Ecology, 82(3), 549–559.

    Article  Google Scholar 

  • Thrall, P. H., Burdon, J. J., & Bever, J. D. (2002). Local adaptation in the Linum marginale-Melampsora lini host-pathogen interaction. Evolution, 56(7), 1340–1351.

    PubMed  Google Scholar 

  • Tinline, R. D., & MacNeill, B. H. (1969). Parasexuality in plant pathogenic fungi. Annual Review of Phytopathology, 7(1), 147–168.

    Article  Google Scholar 

  • Uchida, W., Matsunaga, S., Sugiyama, R., Kazama, Y., & Kawano, S. (2003). Morphological development of anthers induced by the dimorphic smut fungus Microbotryum violaceum in female flowers of the dioecious plant Silene latifolia. Planta, 218(2), 240–248.

    Article  CAS  PubMed  Google Scholar 

  • Valente, L. M., Savolainen, V., & Vargas, P. (2010). Unparalleled rates of species diversification in Europe. Proceedings of the Royal Society B: Biological Sciences, 277(1687), 1489–1496.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Tomáš Herben, Patrik Mráz and anonymous reviewers for constructive comments on earlier drafts of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klára Koupilová.

Ethics declarations

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

Authors declare that they have no conflict of interest.

Supplementary Information

ESM 1

(PDF 76 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koupilová, K., Koubek, T., Cornille, A. et al. Local maladaptation of the anther-smut fungus parasitizing Dianthus carthusianorum. Eur J Plant Pathol 160, 365–374 (2021). https://doi.org/10.1007/s10658-021-02249-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-021-02249-0

Keywords

Navigation