Advertisement

Molecular characterization of Alfalfa mosaic virus (AMV) isolates in alfalfa and other plant species in different regions in Saudi Arabia

  • 21 Accesses

Abstract

In a survey conducted in 2012 and 2013, 1166 samples from alfalfa plants and 202 samples from symptomatic weeds and cultivated plants growing adjacent to alfalfa fields were collected. Using DAS-ELISA, Alfalfa mosaic virus (AMV) was detected in 58.4% of the alfalfa samples and in 63.9% of the weeds and cultivated plants samples. ELISA detection of AMV was confirmed by testing representative samples from all regions by RT-PCR using a pair of primers (AMV/F and AMV/R) specific to the AMV coat protein (CP) gene. The size of the major product obtained from AMV-infected plants was identical to the 700 bp size expected from the CP gene of AMV. The amino acids and the nucleotide sequences of 17 Saudi AMV isolates from alfalfa, and 16 from other cultivated plants and weeds detected in different regions in Saudi Arabia showed a percentage of similarity that ranged between 87.9%–100% among them and 86.2% - 100% when compared with sequences of 15 different AMV isolates reported in the GenBank. This is the first time AMV was detected in Vigna unguiculata and in the following weed plant species: Chenopodium quinoa, Convolvulus arvensis, Malva parviflora, Hibiscus spp., Hippuris vulgaris, Cichorium intybus, and Flaveria trinervia in Saudi Arabia.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3

References

  1. Al-Abrahim, J. S. (2014). Molecular identification of Alfalfa mosaic virus isolated from naturally infected alfalfa (Medicago sativa) crop in Saudi Arabia. International Journal of Plant, Animal and Environmental Sciences, 4(1), 348–352.

  2. AL-Saleh, M. A., & Amer, M. A. (2013). Biological and molecular variability of Alfalfa mosaic virus affecting alfalfa crop in Riyadh region. Plant Pathology Journal, 29(14), 410–417.

  3. AL-Shahwan, I. M. (2002). Alfalfa mosaic virus (AMV) on alfalfa (Medicago sativa L.) in Saudi Arabia. Assiut Journal of Agricultural Sciences, 33, 21–30.

  4. AL-Shahwan, I. M. (2003). Host index and status of plant viruses and virus-like disease agents in Saudi Arabia. Res. Bult., No.121: Agric. Res. Center, King Saud Univ., pp: 5–27.

  5. AL-Shahwan, I. M., & Abdalla, O. A. (1998). Identification of Alfalfa mosaic virus (AMV) and other viruses from wild and cultivated plant species and reaction of the available potato cultivars to AMV in Saudi Arabia. Saudi J. Biol. Sci., 5, 39–44.

  6. AL-Shahwan, I. M., Abdalla, O. A., & Al-Saleh, M. A. (1997). Viruses in the northern potato producing regions of Saudi Arabia. Plant Pathology, 46, 91–94.

  7. Al-Shahwan, I. M., Anaam, A. M., Abdalla, O. A. (2007). Evaluation of greenhouse-grown pepper cultivars to infection with an isolate of Alfalfa mosaic virus (AMV) in Saudi Arabia. Research bulletin No. 151. Agric. Research Center, College of Food and Agricultural Sciences, King Saud University, Kingdom of Saudi Arabia, pp. 5-28.

  8. AL-Shahwan, I. M., Abdalla, O. A., & AL brahim, J. S. (2010). Effect of Alfalfa mosaic virus (AMV) on the yield of alfalfa (Medicago sativa L.) Cultivars grown in Saudi Arabia. Journal of Agriculture and Veterinary Sciences, Qassim University, 3, 23–36.

  9. AL-Shahwan, I. M., Al-Saleh, A. M., Abdalla, O. A., Amer, M. A. (2013). Preliminary data on viruses affecting alfalfa in Saudi Arabia. Presented at “International Conference of Plant Disease and Resistance mechanism” held in Vienna on 20–22 February, 2013.

  10. AL-Shahwan, I. M., Al-Saleh, A. M., Abdalla, O. A., Amer, M. A. (2014). Viruses associated with alfalfa and adjacent weeds and cultivated plants in the Kingdom of Saudi Arabia. Presented at "11 thConference of the European Foundation for Plant Pathology" held in Krakow, Poland on 8-13 September, 2014.

  11. AL-Shahwan, I. M., Abdalla, O. A., Al-Saleh, A. M., & Amer, M. A. (2016a). Detection of new viruses in alfalfa, weeds and cultivated plants growing adjacent to alfalfa fields in Saudi Arabia. Saudi Journal of Biological Sciences, 24, 1336–1343.

  12. AL-Shahwan, I. M., Farooq, T., Al-Saleh, M. A., Abdalla, O. A., & Amer, M. A. (2016b). First report of Red clover vein mosaic virus infecting alfalfa in Saudi Arabia. Plant Disease Note, 100(2), 539.

  13. AL-Shahwan, I. M., Raza, A., Abdalla, O. A., Al-Saleh, M. A., & Amer, M. A. (2016c). First report of Lucerne transient streak virus (LTSV) on Alfalfa in Saudi Arabia. Plant Disease Note, 100(2), 540.

  14. Bailiss, K. W., & Ollennu, L. A. A. (1986). Effect of Alfalfa mosaic virus isolates on forage yield of lucerne (Medicago sativa) in Britain. Plant Pathology, 35, 162–168.

  15. Bancroft, J. B., Moorhead, E. L., Tuite, J., & Liu, H. P. (1960). The antigenic characteristics and the relationship among strains of Alfalfa mosaic virus. Phytopathology, 50, 34–39.

  16. Bergua, M., Luis-Arteaga, M., & Escriu, F. (2014). Genetic diversity, reassortment, and recombination in Alfalfa mosaic virus population in Spain. Phytopathology, 104, 1241–1250.

  17. Clark, M. F., & Adams, A. N. (1977). Characterization of the microplate method of enzyme-linked immunosorbent assay for the detection of plant viruses. The Journal of General Virology, 34, 475–483.

  18. Crill, P., Hagedorn, D. J., & Hanson, E. W. (1970). Incidence and effect of Alfalfa mosaic virus on alfalfa. Phytopathology, 60, 1432–1435.

  19. Fitch, W. M. (1977). Problem of discovering most parsimonious tree. The American Naturalist, 111, 223–257.

  20. Fletcher, J. D. (2001). New hosts of Alfalfa mosaic virus, Cucumber mosaic virus, Potato virus Y, Soybean dwarf virus, and Tomato spotted wilt virus in New Zealand. New Zealand Journal of Crop and Horticultural Science, 29, 213–217.

  21. Forster, R. L. S., Morris-Krsinich, B. A. M., & Musgrave, D. R. (1985). Incidence of alfalfa mosaic virus, lucerne Australian latent virus, and lucerne transient streak virus in lucerne crops in the North Island of New Zealand. New Zealand Journal of Crop and Horticultural Science, 28, 279–282.

  22. Frosheiser, F. I. (1974). Alfalfa Mosaic Virus transmission to seed through alfalfa gametes and longevity in alfalfa seed. Phytopathology, 64, 102–105.

  23. Garran, J., & Gibbs, A. J. (1982). Studies on alfalfa mosaic virus and alfalfa aphids. Australian Journal of Agricultural Research, 33, 657–664.

  24. Guy, P. L. (2014). Viruses of New Zealand pasture grasses and legumes: A review. Crop & Pasture Science, 65, 841–853.

  25. Guy, P. L., & Forster, R. L. S. (1996). Viruses of New Zealand pasture grasses and legumes.: Pasture and forage crop pathology., In S. Chakraborty, K. T. Leath, R. A. Skipp, G. A. Pederson, R. A. bray, G. C. M. Latch, and F. W. Nutter (ed.), pp. 289–302. American Society of Agronomy & the Crop Science Society of America: Madison WI, USA.

  26. Guy, P. L., Gerard, P. J., & Wilson, D. J. (2013). Incidence of viruses in white clover on the North Island of New Zealand. Australasian Plant Pathology, 42, 639–642.

  27. Hajimorad, M. R., & Francki, R. I. B. (1988). Alfalfa mosaic virus isolates from lucerne in South Australia: Biological variability and antigenic similarity. The Annals of Applied Biology, 113, 45–54.

  28. Hall, T. A. (1999). Bio edit: A user-friendly biological sequence alignment editor and analysis program from windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95–98.

  29. Hiruki, C., Hampton, R. O. (1990). Alfalfa mosaic. In: Stuteville, D. L. and Erwin, D. C., 2nd Ed., APS press, St. Paul "Compendium of Alfalfa Diseases", pp. 54.

  30. Jaspars, E. M., & Bos, L. (1980). Alfalfa mosaic virus, No. 229 in: Descriptions of plant viruses. England: Commonwealth Mycology Institute Association. Applied Biology. Kew.

  31. Jones, R. A. C. (2012). Virus diseases of annual pasture legumes: Incidences, losses, epidemiology, and management. Crop and Pasture Science, 63(5), 399–418.

  32. Kraal, B. (1975). Amino acid analysis of Alfalfa mosaic virus coat proteins: An aid for viral strain identification. Virology, 66, 336–340.

  33. Latham, L. J., & Jones, R. A. C. (2001). Alfalfa mosaic and pea seed-borne mosaic viruses in cool season crop, annual pasture, and forage legumes: Susceptibility, sensitivity, and seed transmission. Australian Journal of Agricultural Research, 52, 771–790.

  34. Massumi, H., Maddahian, M., Heydarnejad, J., Hosseini-Pour, A., & Farahmand, A. (2012). Incidence of viruses infecting alfalfa in the southeast and central regions of Iran. Journal of Agricultural Science Technology, 14, 1141–1148.

  35. McKirdy, S. J., & Jones, R. A. C. (1994). Infection of alternative hosts associated with annual medics (Medicago spp.) by Alfalfa mosaic virus and its persistence between growing seasons. Australian Journal of Agricultural Research, 45, 1413–1426.

  36. Mih, A. M., & Hanson, J. (1998). Alfalfa mosaic virus: Occurrence and variation among isolates from forage legumes in Ethiopia. Tropical Grasslands, 32, 118–123.

  37. Milbrath, J. A., & McWhorter, F. P. (1953). The reaction of tomato varieties to various strains of Alfalfa mosaic virus. Phytopathology, 43, 479–479.

  38. Milbrath, J. A., & McWhorter, F. P. (1954). Response of cowpea varieties to strains of Alfalfa mosaic virus. Phytopathology, 44, 498–498.

  39. Ministry of Agriculture, (2014). Agricultural statistical year book. Volume 24, Saudi Arabia.

  40. Mughal, S. M., Zadjali, A. D., & Matrooshi, A. R. (2003). Occurrence, distribution and some properties of alfalfa mosaic alfamovirus in the Sultanate of Oman. Pakistan Journal of Agricultural Sciences, 40, 67–73.

  41. Ormeño, J., Sepúlveda, P., Rojas, R., & Araya, J. E. (2006). Datura genus weeds as an epidemiological factor of Alfalfa mosaic virus (AMV), Cucumber mosaic virus (CMV), and Potato virus Y (PVY) on Solanaceous crops. Agricultura Técnica (Chile), 66, 333–341.

  42. Parrella, G., Lanave, C., Marchoux, G., Sialer, M. M., Di Franco, A., & Gallitelli, D. (2000). Evidence for two distinct subgroups of Alfalfa mosaic virus (AMV) from France and Italy and their relationships with other AMV strains. Archives of Virology, 145, 2659–2667.

  43. Parrella, G., Acanfora, N., Orílio, A., & Navas-Castillo, J. (2011). Complete nucleotide sequence of a Spanish isolate of alfalfa mosaic virus: Evidence for additional genetic variability. Archives of Virology, 156, 1049–1052.

  44. Rahman, F., & Peaden, R. N. (1993). Incidence of viruses on alfalfa in Western North America. Plant Disease, 77, 160–162.

  45. Raza, A., Al-Shahwan, I. M., Abdalla, O. A., Al-Saleh, M. A., & Amer, M. A. (2017). Lucerne transient streak virus; a recently detected virus infecting Alfafa (Medicago sativa) in Central Saudi Arabia. Plant Pathology Journal, 33(1), 43–52.

  46. Saitou, N., & Nei, M. (1987). The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4, 406–425.

  47. Sambrook, J., & Russel, D. (2001). Molecular cloning: A laboratory manual. 3rd Ed. Volume 1. Cold Spring Harbor Laboratory Press, New York – USA.

  48. Shah, D. A., Dillard, H. R., Mazumdar-Leighton, S., Gonsalves, D., & Nault, B. A. (2006). Incidence, spatial patterns, and associations among viruses in snap bean and alfalfa in New York. Plant Disease, 90, 203–210.

  49. Šutic, D. D., Ford, R. E., & Tošic, M. T. (1999). Handbook of plant virus diseases. Washington: CRC Press.

  50. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., & Higgens, D. G. (1997). The Clustal X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 25, 4876–4882.

  51. Trucco, V., de Breuil, S., Bejerman, N., Lenardon, S., & Giolitti, F. (2013). Complete nucleotide sequence of alfalfa mosaic virus isolated from alfalfa (Medicago sativa L.) in Argentina. Virus Genes, 48, 562–565.

  52. Van Leur, J. A. G., & Kumari, S. G. (2011). A survey of lucerne in northern New South Wales for viruses of importance to the winter legume industry. Australasian Plant Pathology, 40, 180–186.

  53. Xu, H., & Nie, J. (2006). Identification, characterization and molecular detection of alfalfa mosaic virus in potato. Phytopathology, 96, 1237–1242.

Download references

Acknowledgements

This Project was funded by the National Plan for Science, Technology and Innovation (MAARIFAH), King Abdulaziz City for Science and Technology, Kingdom of Saudi Arabia, Award Number (10-BIO 979-02).

Author information

Correspondence to O. A. Abdalla.

Ethics declarations

This research is part of a project funded by the National Plan for Science, Technology and Innovation (MAARIFAH), King Abdulaziz City for Science and Technology, Kingdom of Saudi Arabia, Grant Number (10-BIO 979-02). This manuscript complies with the Ethical Rules applicable for this journal. The authors declare that they have no conflict of interest. This article does not contain any studies with human participants or animals performed by any of the authors. Informed consent was obtained from all individual participants included in the study. It also complies with all details of the relevant ethical rules that came under the following headings:

- Ethical responsibilities of authors.

- Compliance with ethical standards.

- Disclosure of potential conflicts of interest.

- Research involving human participants or and/or animals.

- Informed consent.

- Springer’s guide on publishing ethics.

- Fighting plagiarism, piracy and fraud.

It also complies with any other ethical rules required by the journal that may have not been included in this statement.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Abdalla, O.A., AL-Shahwan, I.M., AL-Saleh, M.A. et al. Molecular characterization of Alfalfa mosaic virus (AMV) isolates in alfalfa and other plant species in different regions in Saudi Arabia. Eur J Plant Pathol (2020) doi:10.1007/s10658-019-01910-z

Download citation

Keywords

  • Alfalfa
  • AMV
  • ELISA
  • RT-PCR
  • Saudi Arabia