Biological control of Phytophthora blight by Pseudomonas protegens strain 14D5


Foliage blight caused by Phytophthora nicotianae and Ph. tropicalis is an important disease of annual vinca (Catharanthus roseus). In this study, 121 strains of Pseudomonas species originally recovered from recycled irrigation water were evaluated in vitro and in planta for their biological control potentials against this disease. We found 12 strains belonging to Ps. granadensis and Ps. protegens that reduced the radial growth of colonies of Ph. nicotianae isolate 3A12 by >91% in 6-well plates. They also reduced the radial growth of 3A12 and Ph. tropicalis isolate 7G9 by at least 82 and 54%, respectively, in 10-cm plates. In planta, Ps. protegens strain 14D5 reduced the infection by isolate 3A12 on four cultivars of annual vinca by 36 to 59%. Disease control efficacy of 14D5 against isolate 7G9 ranged from 23 to 45% depending on the plant cultivar. Secondary metabolites produced by strain 14D5 significantly reduced the radial growth of both Phytophthora isolates 3A12 and 7G9 in liquid media. Treatments containing these metabolites also reduced encystment, germination, and survival rates of zoospores of isolate 3A12, and foliage blight severity on C. roseus ‘Pacifica Punch Xp’ caused by 3A12. Treatments containing live cells and metabolites of 14D5 resulted in higher zoospore mortality and disease reduction than those only containing metabolites. These findings indicated that producing anti-Phytophthora secondary metabolites is likely the major mode of action of stain 14D5, while other mechanisms such as parasitism might be involved in its biological control against Phytophthora foliage blight.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3

Change history

  • 13 January 2020

    This erratum is published as vendor overlooked several author corrections related with Table 1 & 2 during proofing.


  1. Ahonsi, M. O., Banko, T. J., & Hong, C. X. (2007). A simple in-vitro ‘wet-plate’ method for mass production of Phytophthora nicotianae zoospores and factors influencing zoospore production. Journal of Microbiological Methods, 70, 557–560.

  2. Alvarez-Rodriguez, B., Ortiz-Meza, J. A., Rojo-Baez, I., Marquez-Zequera, I., Garcia-Estrada, R. S., Carrillo-Fasio, J. A., & Allende-Molar, R. (2013). First report of vinca blight caused by Phytophthora nicotianae in northwestern Mexico. Plant Disease, 97, 1257.

  3. Andreolli, M., Zapparoli, G., Angelini, E., Lucchetta, G., Lampis, S., & Vallini, G. (2019). Pseudomonas protegens MP12: A plant growth-promoting endophytic bacterium with broad-spectrum antifungal activity against grapevine phytopathogens. Microbiological Research, 219, 123–131.

  4. Brendel, N., Partida-Martinez, L. P., Scherlach, K., & Hertweck, C. (2007). A cryptic PKS-NRPS gene locus in the plant commensal Pseudomonas fluorescens Pf-5 codes for the biosynthesis of an antimitotic rhizoxin complex. Organic & Biomolecular Chemistry, 5, 2211–2213.

  5. Burns, J. R., & Benson, D. M. (2000). Biocontrol of damping-off of Catharanthus roseus caused by Pythium ultimum with Trichoderma virens and binucleate Rhizoctonia fungi. Plant Disease, 84, 644–648.

  6. Caulier, S., Gillis, A., Colau, G., Licciardi, F., Liepin, M., Desoignies, N., Modrie, P., Legreve, A., Mahillon, J., & Bragard, C. (2018). Versatile antagonistic activities of soil-borne Bacillus spp. and Pseudomonas spp. against Phytophthora infestans and other potato pathogens. Frontiers in Microbiology, 9, 143.

  7. Core Team, R. (2015). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.

  8. Dastur, J. F. (1916). Phytophthora on Vinca rosea. Memoirs of the Department of Agriculture in India. Botanical series, 8, 233–242.

  9. de Mendiburu, F. (2015). Agricolae: Statistical procedures for agricultural research. In: R package version 1.2-3.

  10. De Vrieze, M., Germanier, F., Vuille, N., & Weisskopf, L. (2018). Combining different potato-associated Pseudomonas strains for improved biocontrol of Phytophthora infestans. Frontiers in Microbiology, 9, 2573.

  11. De Vrieze, M., Gloor, R., Codina, J. M., Torriani, S., Gindro, K., L’Haridon, F., Bailly, A., & Weisskopf, L. (2019). Biocontrol activity of three Pseudomonas in a newly assembled collection of Phytophthora infestans isolates. Phytopathology, 109, 1555–1565.

  12. Erwin, D. C., & Ribeiro, O. K. (1996). Phytophthora diseases worldwide. St. Paul: APS Press.

  13. Ferrin, D. M., & Rohde, R. G. (1992a). In vivo expression of resistance to metalaxyl by a nursery isolate of Phytophthora parasitica from Catharanthus roseus. Plant Disease, 76, 82–84.

  14. Ferrin, D. M., & Rohde, R. G. (1992b). Population dynamics of Phytophthora parasitica, the cause of root and crown rot of Catharanthus roseus, in relation to fungicide use. Plant Disease, 76, 60–63.

  15. Firman, I. D. (1975). Phytophthora and Pythium species and the diseases caused by them in the area of the South Pacific Commission. Fiji Agricultural Journal, 37, 1–8.

  16. Gallegly, M. E., & Hong, C. (2008). Phytophthora: Identifying species by morphology and DNA fingerprints (1st ed.). St. Paul: American Phytopathological Society.

  17. Garibaldi, A., Bertetti, D., & Gullino, M. L. (2006). First report of leaf blight caused by Rhizoctonia solani AG 1B on Madagascar periwinkle (Catharanthus roseus) in Italy. Plant Disease, 90, 1361–1361.

  18. Gill, H. S., Ribeiro, O. K., & Zentmyer, G. A. (1977). Phytophthora blight of periwinkles in the Coachella Valley of California. Plant Disease Reporter, 61, 560–561.

  19. Gross, H., Stockwell, V. O., Henkels, M. D., Nowak-Thompson, B., Loper, J. E., & Gerwick, W. H. (2007). The genomisotopic approach: A systematic method to isolate products of orphan biosynthetic gene clusters. Chemistry & Biology, 14, 53–63.

  20. Guyer, A., De Vrieze, M., Bonisch, D., Gloor, R., Musa, T., Bodenhausen, N., Bailly, A., & Weisskopf, L. (2015). The anti-Phytophthora effect of selected potato-associated Pseudomonas strains: From the laboratory to the field. Frontiers in Microbiology, 6, 1309.

  21. Hao, W., Richardson, P. A., & Hong, C. X. (2010). Foliar blight of annual vinca (Catharanthus roseus) caused by Phytophthora tropicalis in Virginia. Plant Disease, 94, 274.

  22. Holcomb, G. E., & Carling, D. E. (2002). First report of web blight caused by Rhizoctonia solani on Catharanthus roseus in Louisiana. Plant Disease, 86, 1272.

  23. Howell, C. R., & Stipanovic, R. D. (1979). Control of Rhizoctonia solani in cotton seedlings with Pseudomonas fluorescens and with an antibiotic produced by the bacterium. Phytopathology, 69, 480–482.

  24. Howell, C. R., & Stipanovic, R. D. (1980). Suppression of Pythium ultimum induced damping-off of cotton seedlings by Pseudomonas fluorescens and its antibiotic, pyoluteorin. Phytopathology, 70, 712–715.

  25. Hu, J. H., Hong, C. X., Stromberg, E. L., & Moorman, G. W. (2008). Mefenoxam sensitivity and fitness analysis of Phytophthora nicotianae isolates from nurseries in Virginia, USA. Plant Pathology, 57, 728–736.

  26. Huang, Y., Ma, L., Fang, D. H., Xi, J. Q., Zhu, M. L., Mo, M. H., Zhang, K. Q., & Ji, Y. P. (2015). Isolation and characterisation of rhizosphere bacteria active against Meloidogyne incognita, Phytophthora nicotianae and the root knot-black shank complex in tobacco. Pest Management Science, 71, 415–422.

  27. Hwang, J., & Benson, D. M. (2005). Identification, mefenoxam sensitivity, and compatibility type of Phytophthora spp. attacking floriculture crops in North Carolina. Plant Disease, 89, 185–190.

  28. Keim, R. (1977). Foliage blight of periwinkle in southern California. Plant Disease Reporter, 61, 182–184.

  29. Khatun, A., Farhana, T., Sabir, A. A., Islam, S. M. N., West, H. M., Rahman, M., & Islam, T. (2018). Pseudomonas and Burkholderia inhibit growth and asexual development of Phytophthora capsici. Zeitschrift Fur Naturforschung Section C- Journal of Biosciences, 73, 123–135.

  30. Kidarsa, T. A., Goebel, N. C., Zabriskie, T. M., & Loper, J. E. (2011). Phloroglucinol mediates crosstalk between the pyoluteorin and 2,4-diacetylphloroglucinol biosynthetic pathways in Pseudomonas fluorescens Pf-5. Molecular Microbiology, 81, 395–414.

  31. Kong, P., Hong, C. X., Richardson, P. A., & Gallegly, M. E. (2003). Single-strand-conformation polymorphism of ribosomal DNA for rapid species differentiation in genus Phytophthora. Fungal Genetics and Biology, 39, 238–249.

  32. Kraus, J., & Loper, J. E. (1992). Lack of evidence for a role of antifungal metabolite production by Pseudomonas fluorescens Pf-5 in biological control of Pythium damping-off of cucumber. Phytopathology, 82, 264–271.

  33. Lim, Y.-S., Choi, C.-D., & Kim, B.-S. (2004). Foliage blight of vinca (Catharanthus roseus) by Phytophthora nicotianae. Research in Plant Disease, 10, 17–20.

  34. Lin, S., Martin, D. E., Taylor, N. J., Gabriel, C. K., Ganeshan, V. D., & Hand, F. P. (2018). First report of Phytophthora aerial blight caused by Phytophthora nicotianae on vinca, lobelia, and calibrachoa in Ohio. Plant Disease, 102, 456–456.

  35. Luongo, L., Vitale, S., Galli, M., Haegi, A., Wagner, S., Werres, S., & Belisario, A. (2016). Morphological and molecular identification of Phytophthora tropicalis as causal agent of crown and root rot on Albizia julibrissin. Journal of Phytopathology, 164, 959–966.

  36. McGovern, R. J., McSorley, R., & Urs, R. R. (2000). Reduction of Phytophthora blight of Madagascar periwinkle in Florida by soil solarization in autumn. Plant Disease, 84, 185–191.

  37. Michavila, G., Adler, C., De Gregorio, P. R., Lami, M. J., Caram Di Santo, M. C., Zenoff, A. M., de Cristobal, R. E., & Vincent, P. A. (2017). Pseudomonas protegens CS1 from the lemon phyllosphere as a candidate for citrus canker biocontrol agent. Plant Biology, 19, 608–617.

  38. Miguelez-Sierra, Y., Acebo-Guerrero, Y., El Jaziri, M., Bertin, P., & Hernández-Rodríguez, A. (2019). Pseudomonas chlororaphis CP07 strain reduces disease severity caused by Phytophthora palmivora in genotypes of Theobroma cacao. European Journal of Plant Pathology, In Press,

  39. Moruzzi, S., Firrao, G., Polano, C., Borselli, S., Loschi, A., Ermacora, P., Loi, N., & Martini, M. (2017). Genomic-assisted characterisation of Pseudomonas sp strain Pf4, a potential biocontrol agent in hydroponics. Biocontrol Science and Technology, 27, 969–991.

  40. Nowakthompson, B., Gould, S. J., Kraus, J., & Loper, J. E. (1994). Production of 2,4-diacetylphloroglucinol by the biocontrol agent Pseudomonas fluorescens Pf-5. Canadian Journal of Microbiology, 40, 1064–1066.

  41. Olson, H. A., Jeffers, S. N., Ivors, K. L., Steddom, K. C., Williams-Woodward, J. L., Mmbaga, M. T., Benson, D. M., & Hong, C. X. (2013). Diversity and mefenoxam sensitivity of Phytophthora spp. associated with the ornamental horticulture industry in the southeastern United States. Plant Disease, 97, 86–92.

  42. Ortega-Acosta, S. A., Hernandez-Morales, J., Ochoa-Martinez, D. L., & Ayala-Escobar, V. (2017). First report of Phytophthora tropicalis causing stem and root rot on sesame (Sesamum indicum) in Mexico. Plant Disease, 101, 258.

  43. Pane, A., Cacciola, S. O., Scibetta, S., Bentivenga, G., & Lio, G. M. D. (2009). Four Phytophthora species causing foot and root rot of apricot in Italy. Plant Disease, 93, 844–845.

  44. Pasquier, E., & Kavallaris, M. (2008). Microtubules: A dynamic target in cancer therapy. IUBMB Life, 60, 165–170.

  45. Philmus, B., Shaffer, B. T., Kidarsa, T. A., Yan, Q., Raaijmakers, J. M., Begley, T. P., & Loper, J. E. (2015). Investigations into the biosynthesis, regulation, and self-resistance of toxoflavin in Pseudomonas protegens Pf-5. Chembiochem, 16, 1782–1790.

  46. Polano, C., Martini, M., Savian, F., Moruzzi, S., Ermacora, P., & Firrao, G. (2019). Genome sequence and antifungal activity of two niche-sharing Pseudomonas protegens related strains isolated from hydroponics. Microbial Ecology, 77, 1025–1035.

  47. Quecine, M. C., Kidarsa, T. A., Goebel, N. C., Shaffer, B. T., Henkels, M. D., Zabriskie, T. M., & Loper, J. E. (2016). An interspecies signaling system mediated by fusaric acid has parallel effects on antifungal metabolite production by Pseudomonas protegens strain Pf-5 and antibiosis of Fusarium spp. Applied and Environmental Microbiology, 82, 1372–1382.

  48. Ramette, A., Frapolli, M., Fischer-Le Saux, M., Gruffaz, C., Meyer, J.-M., Defago, G., Sutra, L., & Moenne-Loccoz, Y. (2011). Pseudomonas protegens sp. nov., widespread plant-protecting bacteria producing the biocontrol compounds 2,4-diacetylphloroglucinol and pyoluteorin. Systematic and Applied Microbiology, 34, 180–188.

  49. Schubert, T. S., & Leahy, R. M. (1989). Phytophthora blight of the Catharanthus roseus. Florida Department of Agriculture & Consumer Services. Plant Pathology Circular, 321, 174–175.

  50. Shi, J. Y., Liu, A. Y., Li, X. P., & Chen, W. X. (2013). Control of Phytophthora nicotianae disease, induction of defense responses and genes expression of papaya fruits treated with Pseudomonas putida MGP1. Journal of the Science of Food and Agriculture, 93, 568–574.

  51. Smits, T. H. M., Rezzonico, F., Frasson, D., Vesga, P., Vacheron, J., Blom, J., Pothier, J. F., Keel, C., Maurhofer, M., & Sievers, M. (2019). Updated genome sequence and annotation for the full genome of Pseudomonas protegens CHA0. Microbiology Resource Announcements, 8, e01002–e01019.

  52. Sowanpreecha, R., & Rerngsamran, P. (2018). Biocontrol of orchid-pathogenic mold, Phytophthora palmivora, by antifungal proteins from Pseudomonas aeruginosa RS1. Mycobiology, 46, 129–137.

  53. Stearn, W. (1975). A synopsis of the genus Catharanthus (Apocynaceae). In W. Taylor & N. Fransworth (Eds.), Catharanthus alkaloids (pp. 9–44). New York: Marcel Dekker.

  54. Takeuchi, K., Noda, N., & Someya, N. (2014). Complete genome sequence of the biocontrol strain Pseudomonas protegens Cab57 discovered in Japan reveals strain-specific diversity of this species. PLoS One, 9, e93683.

  55. Wagner, A., Norris, S., Chatterjee, P., Morris, P. F., & Wildschutte, H. (2018). Aquatic pseudomonads inhibit oomycete plant pathogens of Glycine max. Frontiers in Microbiology, 9, 1007.

  56. Wang, S., & Buk, J. (2013). First detection and molecular identification of Phytophthora parasitica from annual vinca in Nevada. Phytopathology, 103, 155–156.

  57. Yang, X., & Hong, C. X. (2018). Biological control of boxwood blight by Pseudomonas protegens recovered from recycling irrigation systems. Biological Control, 124, 68–73.

  58. Ziegler, J., & Facchini, P. J. (2008). Alkaloid biosynthesis: Metabolism and trafficking. Annual Review of Plant Biology, 59, 735–769.

Download references


The authors wish to thank Dr. Giovanni Cafà for isolating bacterial strains and Mrs. Patricia Richardson for her assistance in identifying bacterial strains and Phytophthora isolates used in this study.

Author information

Correspondence to Xiao Yang.

Ethics declarations

This paper reports original research by the authors which has not been published elsewhere nor submitted for publication elsewhere.

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal rights

This article does not contain any studies with human or animal subjects performed by any of the authors.

Electronic Supplementary Material


(XLSX 18 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Hong, C. Biological control of Phytophthora blight by Pseudomonas protegens strain 14D5. Eur J Plant Pathol (2019) doi:10.1007/s10658-019-01909-6

Download citation


  • Biocontrol
  • Pseudomonads
  • Madagascar periwinkle
  • Antibiosis