Advertisement

Identification of inoculum sources of Fusicladium eriobotryae in loquat orchards in Spain

  • G. Elena
  • M. Berbegal
  • E. González-Domínguez
  • J. ArmengolEmail author
Article
  • 17 Downloads

Abstract

Fusicladium eriobotryae is the causal agent of loquat scab, the main disease damaging fruit, leaves and young twigs of this crop. A two-growing season study (2015–2016 and 2016–2017) was carried out in two loquat orchards (cv “Algerie”) to determine the inoculum sources of F. eriobotryae by direct observation of conidia, pathogen isolation on culture media and detection using a new real time PCR protocol developed in this study. One-year-old twigs, fruit peduncles and fruit mummies were randomly sampled three times per growing season on each orchard, and inflorescences only at flowering. Conidia of F. eriobotryae were not found and the isolation of the pathogen was neither possible from any sample in both seasons. Specific primers FUG2F and FUG2R, were designed to detect and quantify DNA of F. eriobotryae on plant material, with a limit of detection (LOD) established at 48.6 fg/μl. The DNA of the pathogen was not detected by real time PCR in fruit mummies nor inflorescences. It was detected in fruit peduncles and twigs in the season 2016–2017 with concentrations ranging from 50 to 2742 fg/μl, confirming that this two loquat organs might act as potential inoculum sources for F. eriobotryae. The detection of F. eriobotryae only in this season agrees with the predictions of an epidemiological model for this pathogen. Our results indicate that in years with a high disease pressure, fruit twigs and peduncles might act as a source of inoculum of new infections the following year.

Keywords

Loquat scab Epidemiology Pathogen detection qPCR 

Notes

Acknowledgements

This study was funded by ‘Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)’ grant number RTA2013-00004-C03-03, and FEDER Funds. G. Elena was supported by the Spanish post-doctoral grant Juan de la Cierva-Formación. We thank the E. Soler from the Cooperativa Agrícola de Callosa d’En Sarrià (Alicante, Spain) for his collaboration during orchard sampling, and A. Ramón-Albalat and V. Serra for their technical assistance.

Compliance with ethical standards

Human and animal rights

The authors declare that ethical standards have been followed and that no human participants or animals were involved in this research.

Supplementary material

10658_2019_1892_MOESM1_ESM.pptx (39 kb)
Fig. S1 Standard regression curve plots of the qPCR analysis. A dilution series of Fusicladium eriobotryae FeV40 DNA spanning six orders of magnitude (1/10, 1/100, 1/1000, 1/10,000, 1/100,000 and 1/1000,000) amplified with the primers FUG2F and FUG2R was used to generate the standard curve (PPTX 38 kb)

References

  1. Acuña, R. P. (2010). Compendio de bacterias y hongos de frutales y vides en Chile. Santiago de Chile: Servicio Agrícola y Ganadero.Google Scholar
  2. Bilodeau, G. J., Koike, S. T., Uribe, P., & Martin, F. N. (2012). Development of an assay for rapid detection and quantification of Verticillium dahliae in soil. Phytopathology, 102, 331–343.CrossRefGoogle Scholar
  3. Bustin, S. A., Benes, V., Garson, J. A., Hellemans, J., Huggett, J., Kubista, M., Mueller, R., Nolan, T., Pfaffl, M. W., Hipley, G. L., Vandesompele, J., & Wittwer, C. T. (2009). The MIQE guidelines: Minimum information for publication of quantitative real-time PCR experiments. Clinical Chemistry, 55, 611–622.CrossRefGoogle Scholar
  4. Caballero, P., & Fernández, M. A. (2002). Loquat, production and market. Options Méditerranéennes Serie A, 58, 11–20.Google Scholar
  5. Ciliberti, N., Fermaud, M., Languasco, L., & Rossi, V. (2015). Influence of fungal strain, temperature, and wetness duration of infection of grapevine inflorescences and young berry clusteres by Botrytis cinerea. Phytopathology, 105, 325–333.CrossRefGoogle Scholar
  6. Cullen, D. W., Lees, A. K., Toth, I. K., & Duncan, J. M. (2001). Conventional PCR and real-time quantitative PCR detection of Helminthosporium solani in soil and on potato tubers. European Journal of Plant Pathology, 107, 387–398.CrossRefGoogle Scholar
  7. Daniëls, B., De Landtsheer, A., Dreesen, R., Davey, M. W., & Keulemans, J. (2012). Real-time PCR as a promising tool to monitor growth of Venturia spp. in scab-susceptible and -resistant apple leaves. European Journal of Plant Pathology, 134, 821–833.Google Scholar
  8. Demaree, J. (1924). Pecan scab with special reference to sources of the early spring infections. Journal of Agriculture Research, 28, 321–330.Google Scholar
  9. Ghasemkhani, M., Holefors, A., Marttila, S., Dalman, K., Zborowska, A., Rur, M., Rees-George, J., Nybom, H., Everett, K. R., Scheper, R. W. A., & Garkava-Gustavsson, L. (2016). Real-time PCR for detection and quantification, and histological characterization of Neonectria ditissima in apple trees. Trees, 30, 1111–1125.CrossRefGoogle Scholar
  10. Gisbert, A. D., Besoain, X., Llácer, G., & Badenes, M. L. (2006). Protección de cultivo II, Enfermedades. In M. Agustí, C. Reig, & P. Undurraga (Eds.), El Cultivo del Níspero Japonés (pp. 227–246). Valencia: Gráficas Alcoy.Google Scholar
  11. Gladieux, P., Caffier, V., Devaux, M., & Le Cam, B. (2010). Host specific differentiation among populations of Venturia inaequalis causing scab on apple, pyracantha and loquat. Fungal Genetics and Biology, 47, 511–521.CrossRefGoogle Scholar
  12. González-Domínguez, E., Rossi, V., Armengol, J., & García-Jiménez, J. (2013). Effect of environmental factors on mycelial growth and conidial germination of Fusicladium eriobotryae, and the infection of loquat leaves. Plant Disease, 97, 1331–1338.CrossRefGoogle Scholar
  13. González-Domínguez, E., Armengol, J., & Rossi, V. (2014a). Development and validation of a weather-based model for predicting infection of loquat fruit by Fusicladium eriobotryae. PLoS One, 9, e107547.CrossRefGoogle Scholar
  14. González-Domínguez, E., Rossi, V., Michereff, S. J., García-Jiménez, J., & Armengol, J. (2014b). Dispersal of conidia of Fusicladium eriobotryae and spatial patterns of scab in loquat orchards in Spain. European Journal of Plant Pathology, 139, 849–861.CrossRefGoogle Scholar
  15. González-Domínguez, E., León, M., Armengol, J., & Berbegal, M. (2015). A nested polymerase chain reaction protocol for in planta detection of Fusicladium eriobotryae, causal agent of loquat scab. Journal of Phytopathology, 163, 415–418.CrossRefGoogle Scholar
  16. González-Domínguez, E., Armengol, J., & Rossi, V. (2017). Biology and epidemiology of Venturia species affecting fruit crops: A review. Frontiers in Plant Science, 8, 1496.CrossRefGoogle Scholar
  17. Graniti, A. (1993). Olive scab: A review. EPPO Bulletin, 23, 377–384.CrossRefGoogle Scholar
  18. Gusberti, M., Patocchi, A., Gessler, C., & Broggini, G. A. L. (2012). Quantification of Venturia inaequalis growth in Malus × domestica with quantitative real-time polymerase chain reaction. Plant Disease, 96, 1791–1797.CrossRefGoogle Scholar
  19. Janick, J. (2011). Predictions for loquat improvement in the next decade. Acta Horticulturae, 887, 25–30.CrossRefGoogle Scholar
  20. Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33, 1870–1874.CrossRefGoogle Scholar
  21. Lalancette, N., McFarland, K., & Burnett, L. (2012). Modelling sporulation of Fusicladium carpophilum on nectarine twig lesions: Relative humidity and temperature effects. Phytopathology, 102, 421–428.CrossRefGoogle Scholar
  22. Lin, S. Q. (2007). World loquat production and research with special reference to China. Acta Horticulturae, 750, 37–44.CrossRefGoogle Scholar
  23. Martínez-Calvo, B. J., Badenes, M. L., Llacer, G., Bleiholder, H., Hack, H., & Meier, U. (1999). Phenological growth stages of loquat tree (Eriobotrya japonica (Thunb) Lindl.). Annals of Applied Biology, 134, 353–357.CrossRefGoogle Scholar
  24. Pilotti, M., Lumia, V., Di Lernia, G., & Brunetti, A. (2012). Development of real-time PCR for in wood-detection of Ceratocystis platani, the agent of canker stain of Platanus spp. European Journal of Plant Pathology, 134, 61–79.CrossRefGoogle Scholar
  25. Prota, U. (1960). Ricerche sulla «ticchiolatura del Nespolo del Giappone e sul suo agente (Fusicladium eriobotryae Cav.). I. Observazioni sull’epidemiologia della malattia e sui caratteri morfo-biologici del parassita in Sardegna. Studi di Sassari, 8, 175–196.Google Scholar
  26. Ptskialadze, L. (1968). The causal agent of loquat scab and its biological characteristics. Review of Applied Mycology, 47, 268.Google Scholar
  27. Raabe, R., & Gardner, M. W. (1972). Scab of pyracantha, loquat, Toyon and Kageneckia. Phytopathology, 62, 914–916.CrossRefGoogle Scholar
  28. Rodríguez, A. (1983). El cultivo del níspero en el valle del Algar-Guadalest. Sociedad Cooperativa de Crédito de. Alicante: Callosa d’En Sarrià.Google Scholar
  29. Salerno, M., Somma, V., & Rosciglione, B. (1971). Ricerche sull’epidemiologia della ticchiolatura del nespolo del giappone. Technology Agriculture, 23, 947–956.Google Scholar
  30. Sánchez-Torres, P., Hinarejos, R., & Tuset, J. J. (2007a). Fusicladium eriobotryae: hongo causante del moteado del níspero en el Mediterráneo español. Boletín de Sanidad Vegetal. Plagas, 33, 89–98.Google Scholar
  31. Sánchez-Torres, P., Hinarejos, R., & Tuset, J. J. (2007b). Identification and characterization of Fusicladium eriobotryae: Fungal pathogen causing mediterranean loquat scab. Acta Horticulturae, 750, 343–347.CrossRefGoogle Scholar
  32. Sánchez-Torres, P., Hinarejos, R., & Tuset, J. J. (2009). Characterization and pathogenicity of Fusicladium eriobotryae, the fungal pathogen responsible for loquat scab. Plant Disease, 93, 1151–1157.CrossRefGoogle Scholar
  33. Schena, L., Li Destri Nicosia, M. G., Sanzani, S. M., Faedda, R., Ippolito, A., & Cacciola, S. O. (2013). Development of quantitative PCR detection methods for phytopathogenic fungi and oomycetes. Journal of Plant Pathology, 95, 7–24.Google Scholar
  34. Scherm, H., Savelle, A. T., Boozer, R. T., & Foshee, W. G. (2008). Seasonal dynamics of conidial production potential of Fusicladium carpophilum on twig lesions in south eastern peach orchards. Plant Disease, 92, 47–50.CrossRefGoogle Scholar
  35. Schrader, C., Schielke, A., Ellerbroek, L., & Johne, R. (2012). PCR inhibitors – Occurrence, properties and removal. Journal of Applied Microbiology, 113, 1014–1026.CrossRefGoogle Scholar
  36. Schubert, K. S., Ritschel, A. R., & Braun, U. B. (2003). A monograph of Fusicladium s. lat. (Hyphomycetes). Schlechtendalia, 9, 1–132.Google Scholar
  37. Soler, E., Martínez-Calvo, J., Llácer, G., & Badenes, M. L. (2007). Loquat in Spain: Production and marketing. Acta Horticulturae, 750, 45–47.CrossRefGoogle Scholar
  38. van Leeuwen, G. C. M., Holb, I. J., & Jeger, M. J. (2002). Factors affecting mummification and sporulation of pome fruit infected by Monilinia fructigena in Dutch orchards. Plant Pathology, 51, 787–793.CrossRefGoogle Scholar
  39. Villarino, M., Melgarejo, P., Usall, J., Segarra, J., & De Cal, A. (2010). Primary inoculum sources of Monilinia spp. in Spanish peach orchards and their relative importance in brown rot. Plant Disease, 94, 1048–1054.CrossRefGoogle Scholar
  40. Viruega, J. R., Moral, J., Roca, L. F., Navarro, N., & Trapero, A. (2013). Spilocaea oleagina in olive groves of southern Spain: Survival, inoculum production, and dispersal. Plant Disease, 97, 1549–1556.CrossRefGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2019

Authors and Affiliations

  1. 1.Instituto Agroforestal MediterráneoUniversitat Politècnica de ValènciaValenciaSpain
  2. 2.Horta srl.PiacenzaItaly

Personalised recommendations