Survival of Xanthomonas campestris pv. campestris associated with soil and cauliflower crop debris under Brazilian conditions

  • T. A. F. Silva JúniorEmail author
  • J. C. Silva
  • R. M. Gonçalves
  • J. M. Soman
  • J. R. S. Passos
  • A. C. Maringoni


This study investigated the survival of Xanthomonas campestris pv. campestris (Xcc) in the soil, under field and controlled conditions, and associated with cauliflower crop debris. Under field conditions, the soil temperature influenced the survival of Xcc, and the bacterium survived from 4 to 7 days. Under controlled conditions, the soil type and temperature influenced Xcc survival. Depending on the texture, pH and organic matter content of the soil, the bacterium survived from 10 to 24 days. Xcc survived in the soil for 14 days at 20 °C, and for 4 days when incubated at 30 °C. The soil moisture did not influence Xcc survival of 14 days at the three moisture contents evaluated. Similar behaviour was observed regarding the survival of four Xcc strains in the soil. The longest period of Xcc survival associated with cauliflower debris was 255 days. Our results suggest that the soil is not an important source of inoculum for Xcc. Considering the survival periods of Xcc in cauliflower crop residues under the Brazilian conditions studied, we recommend crop rotation with non-host species of Xcc for 1 year. This information may also be useful for the management of black rot in other brassica-producing countries.


Black rot Ecology, plant pathogenic bacteria Brassica crop 



The authors thank the São Paulo Research Foundation (FAPESP) for granting the post-doc scholarship to the first author (FAPESP process 2011/18527-0) and for the financial support (FAPESP process 2012/13298-5).

Compliance with ethical standards

Conflict of interest

We have no conflict of interest to declare.

Research involving human participants and/or animals

We declare that no human or animal were involved during the research.

Informed consent

Informed consent was obtained from all individual participants included in the study.


  1. Agrios, G. N. (2005). Plant pathology (5th ed.p. 952). San Diego: Academic press.Google Scholar
  2. Aires, A. (2015). Brassica composition and food processing. In P. Victor (Ed.), Processing and impact on active components in food (1th ed., pp. 17–25). Amsterdam: Elsevier Inc..CrossRefGoogle Scholar
  3. Alvarez, A. M., & Cho, J. J. (1978). Black rot of cabbage in Hawaii: Inoculum source and disease incidence. Phytopathology, 68(10), 1456–1459.CrossRefGoogle Scholar
  4. Anjum, N. A., Ahmad, I., Pereira, M. E., Duarte, A. C., Umar, S., & Khan, N. A. (2012). The plant family Brassicaceae: Contribution towards phytoremediation. Dordrecht: Springer Netherlands.CrossRefGoogle Scholar
  5. Barak, J. D., Koike, S. T., & Gilbertson, R. L. (2001). Role of crop debris and weeds in the epidemiology of bacterial leaf spot of lettuce in California. Plant Disease, 85(2), 169–178.CrossRefGoogle Scholar
  6. Bradbury, J. F. (1986). Guide to plant pathogenic bacteria. Slough: CAB International.Google Scholar
  7. Casa, R. T., Reis, E. M., & Zambolim, L. (2003). Decomposição dos restos culturais do milho e sobrevivência saprofítica de Stenocarpella macrospora e S. maydis. Fitopatologia Brasileira, 28(4), 355–361.CrossRefGoogle Scholar
  8. De Boer, H. S. (1982). Survival of phytopathogenic bacteria in soil. In M. Mount & G. H. Lacy (Eds.), Phytopathogenic prokaryotes (Vol. 1, pp. 285–305). New York: Academic Press.CrossRefGoogle Scholar
  9. Diggle, P. J., Heagerty, P., Liang, K. Y., & Zeger, S. L. (2002). Analysis of longitudinal data (2nd ed.). New York: Oxford University Press.Google Scholar
  10. Dzhalilov, F. S., & Tiwari, R. D. (1995). Soil and cabbage plant debris as infection sources of black rot. Archives of Phytopathology & Plant Protection, 29(5), 383–386.CrossRefGoogle Scholar
  11. Gent, D. H., Lang, J. M., & Schwartz, H. F. (2005). Epiphytic survival of Xanthomonas axonopodis pv. allii and X. axonopodis pv. phaseoli on leguminous hosts and onion. Plant Disease, 89(6), 558–564.CrossRefGoogle Scholar
  12. Hattori, T. (1973). Microbial life in the soil: An introduction. New York: Marcel Dekker.Google Scholar
  13. Henz, G. P., Takatsu, A., & Reifschneider, F. J. B. (1988). Avaliação de métodos de inoculação de Xanthomonas campestris patovar campestris para detecção de fontes de resistência em brássicas. Fitopatologia Brasileira, Brasília, 13(3), 207–210.Google Scholar
  14. Jones, J. B., Pohronezny, K. L., Stall, R. E., & Jones, J. P. (1986). Survival of Xanthomonas campestris pv. vesicatoria in Florida on tomato crop residue, weeds, seeds, and volunteer tomato plants. Phytopathology, 76(4), 430–434.CrossRefGoogle Scholar
  15. Köhl, J., Vlaswinkel, M., Groenenboom-de Haas, B. H., Kastelein, P., van Hoof, R. A., van der Wolf, J. M., & Krijger, M. (2011). Survival of pathogens of Brussels sprouts (Brassica oleracea Gemmifera group) in crop residues. Plant Pathology, 60(4), 661–670.CrossRefGoogle Scholar
  16. Maringoni, A. C., & Silva Junior, T. A. F. (2016). Doenças das Brássicas. In L. Amorim, J. A. M. Rezende, A. Bergamin Filho, & L. E. A. Camargo (Eds.), Manual de Fitopatologia: doenças das plantas cultivadas (Vol. 2, 5th ed., pp. 165–173). São Paulo: Ceres.Google Scholar
  17. Nelder, J. A., & Wedderburn, R. W. M. (1972). Generalized linear models. Journal of the Royal Statistical Society. Series A (General), 135(3), 370.CrossRefGoogle Scholar
  18. Schaad, N. W., & White, W. C. (1974). Survival of Xanthomonas campestris in soil. Phytopathology, 64(12), 1518–1520.CrossRefGoogle Scholar
  19. Schultz, T., & Gabrielson, R. L. (1986). Xanthomonas campestris pv. campestris in western Washington crucifer seed fields: Occurrence and survival. Phytopathology, 76(12), 1306–1309.CrossRefGoogle Scholar
  20. Schuster, M. L., & Coyne, D. P. (1974). Survival mechanisms of phytopathogenic bacteria. Annual Review of Phytopathology, 12, 199–221.CrossRefGoogle Scholar
  21. Silva-Júnior, T. A. F., Negrão, D. R., Itako, A. T., Soman, J. M., & Maringoni, A. C. (2012). Survival of Curtobacterium flaccumfaciens pv. flaccumfaciens in soil and bean crop debris. Journal of Plant Pathology, 94(2), 331–337.Google Scholar
  22. Silva, J. C., Silva Júnior, T. A. F., Soman, J. M., Tomasini, T. D., Sartori, M. M. P., & Maringoni, A. C. (2017). Survival of Xanthomonas campestris pv. campestris in the phyllosphere and rhizosphere of weeds. Plant Pathology, 66, 1517–1526.CrossRefGoogle Scholar
  23. Vicente, J. G., & Holub, E. B. (2013). Xanthomonas campestris pv. campestris (cause of black rot of crucifers) in the genomic era is still a worldwide threat to brassica crops. Molecular Plant Pathology, 14(1), 2–18.CrossRefGoogle Scholar
  24. Westfall, P. H., Tobias, R. D., Rom, D., Wolfinger, R. D., & Hochberg, Y. (1999). Multiple comparisons and multiple tests using the SAS® system. Cary: SAS Institute.Google Scholar
  25. Williams, P. H. (1980). Black rot: A continuing threat to world crucifers. Plant Disease, 64(8), 736–742.CrossRefGoogle Scholar
  26. Zaccardelli, M., Campanile, F., Spasiano, A., & Merighi, M. (2007). Detection and identification of the crucifer pathogen, Xanthomonas campestris pv. campestris, by PCR amplification of the conserved Hrp/type III secretion system gene hrcC. European Journal of Plant Pathology, 118(3), 299–306.CrossRefGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2019

Authors and Affiliations

  • T. A. F. Silva Júnior
    • 1
    Email author
  • J. C. Silva
    • 1
  • R. M. Gonçalves
    • 1
  • J. M. Soman
    • 1
  • J. R. S. Passos
    • 2
  • A. C. Maringoni
    • 1
  1. 1.Departamento de Proteção Vegetal, Faculdade de Ciências Agronômicas (FCA)Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP)BotucatuBrazil
  2. 2.Departamento de BioestatísticaInstituto de Biociências, UNESPBotucatuBrazil

Personalised recommendations