Sexual reproduction parameters in Fusarium verticillioides populations from maize in Brazil

  • André Angelo Medeiros GomesEmail author
  • Maruzanete Pereira de Melo
  • Dauri José Tessmann
  • Cristiano Souza LimaEmail author


Fusarium verticillioides is an important plant pathogen causing infections on ears and/or stalks of maize. This study aimed to compare sexual reproduction parameters in populations of F. verticillioides from distinct regions in the different Brazilian climatic zones where maize is grown. Fertility and effective population size were calculated from data generated by crossing field isolates with female fertile testers. Three hundred fungi isolates were obtained from maize kernels with Fusarium ear rot symptoms in different geographic regions of Brazil in the years 2012 and 2013. For the entire population, 231 out of 300 isolates were cross-fertile with tester isolates. MAT1–1 and MAT1–2 idiomorphs of the fertile isolates segregated in a 105:126 ratio. Female isolates (hermaphrodites) accounted for 96 out of 231 fertile isolates, while 135 were male-only isolates. The ratio of mating types within the population [Ne(mt)] was 99% of the count for the Brazilian population when the mating type idiomorphs were used as predictors to estimate the population size. However, when this calculation was made on the basis of the female fertile isolates, the Ne(f) was 83%. When the total population was divided by geographical/climatic regions, the frequencies of female fertile isolates were 33 out of 80 fertile isolates from the Northeast (equatorial tropical climate); 49 out of 73 fertile isolates from the Central-West (tropical climate); and only 14 out of 78 fertile isolates from the South (temperate climate), indicating that the sexual reproduction in F. verticillioides is likely favored by a tropical climate in Brazil. Brazilian populations of F. verticillioides show high fertility and high effective population size, suggesting the possibility of frequent sexual reproduction in the field, especially in populations from Tropical Climate regions of Brazil.


Effective population size Female fertility Fusarium fujikuroi species complex Mating type 



The authors thank the Universidade Federal Rural de Pernambuco, Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Fundação de Amparo à Ciência e Tecnologia do Estado de Pernambuco (FACEPE) for financial support. In addition, the authors would like to thank Professor John F. Leslie for providing the mating testers of Fusarium verticillioides mating population A.

Compliance with ethical standards

Authors confirm that this study described is original and has not been published previously and is not under consideration for publication elsewhere. All authors have approved the manuscript and agree with submission to this Journal. This research does not contain any conflicts of interest, nor research involving humans or animals.


  1. Britz, H., Wingfield, M. J., Coutinho, T. A., Marasas, W. F. O., & Leslie, J. F. (1998). Female fertility and mating type distribution in a south African population of Fusarium subglutinans f. sp. pini. Applied and Environmental Microbiology, 64, 2094–2095.PubMedPubMedCentralGoogle Scholar
  2. Burgess, L. W., & Summerell, B. A. (1992). Mycogeography of Fusarium: Survey of Fusarium species in subtropical and semi-arid grassland soils from Queensland. Mycological Research, 96, 780–784.CrossRefGoogle Scholar
  3. Caballero, A. (1994). Developments in the prediction of effective population size. Heredity, 73, 657–679.CrossRefGoogle Scholar
  4. Chulze, S. N., Ramirez, M. L., Torres, A. T., & Leslie, J. F. (2000). Genetic variation in Fusarium section Liseola from no-till maize in Argentina. Applied and Environmental Microbiology, 66, 5312–5315.CrossRefGoogle Scholar
  5. Covert, S. F., Briley, A., Wallace, M. M., & McKinney, V. T. (1999). Partial MAT-2 gene structure and the influence of temperature on mating success in Gibberella circinata. Fungal Genetics and Biology, 28, 43–54.CrossRefGoogle Scholar
  6. Cumagun, C. J. R. (2004). Molecular and phenotypic analyses of pathogenicity, aggressiveness, mycotoxin production, and colonization in the wheat-Gibberella zeae pathosystem. Beuren: Verlag Grauer.Google Scholar
  7. Cumagun, C. J. R. (2008). Female fertility and mating type distribution in a Philippine population of Fusarium verticillioides. Journal of Applied Genetics, 48, 123–126.CrossRefGoogle Scholar
  8. Danielsen, S., Meyer, U. M., & Funck, J. D. (1998). Genetic characteristics of Fusarium verticillioides isolates from maize in Costa Rica. Plant Pathology, 47, 615–622.CrossRefGoogle Scholar
  9. Desjardins, A. E., Plattner, R. D., Nelsen, T. C., & Leslie, J. F. (1995). Genetic analysis of fumonisin production and virulence of Gibberella fujikuroi mating population A (Fusarium moniliforme) on maize (Zea mays) seedlings. Applied and Environmental Microbiology, 61, 79–86.PubMedPubMedCentralGoogle Scholar
  10. FAO (Food and Agriculture Organization). (2016). FAO Statistical Yearbooks. Accessed 20 Jan 2016.
  11. Lanza, F. E., Zambolim, L., Costa, R. V., Queiroz, V. A. V., Cota, L. V., Silva, D. D., & Figueiredo, J. E. F. (2014). Prevalence of fumonisin-producing Fusarium species in Brazilian corn grains. Crop Protection, 65, 232–237.CrossRefGoogle Scholar
  12. Leslie, J. F. (1995). Gibberella fujikuroi: available populations and variable traits. Canadian Journal of Botany, 73, 282–291.CrossRefGoogle Scholar
  13. Leslie, J. F., & Klein, K. K. (1996). Female fertility and mating type effects on effective population size and evolution in filamentous fungi. Genetics, 144, 557–567.PubMedPubMedCentralGoogle Scholar
  14. Leslie, J. F., & Summerell, B. A. (2006). The Fusarium laboratory manual. Hoboken: Blackwell Publishing.CrossRefGoogle Scholar
  15. Lima, C. S., Pfenning, L. H., Costa, S. S., Abreu, L. M., & Leslie, J. F. (2012). Fusarium tupiense sp. nov., a member of the Gibberella fujikuroi complex that causes mango malformation in Brazil. Mycologia, 104, 1408–1419.CrossRefGoogle Scholar
  16. Mansuetus, A. S. B., Odvody, G. N., Frederiksen, R. A., & Leslie, J. F. (1997). Biological species in the Gibberella fujikuroi species complex (Fusarium section Liseola) recovered from sorghum in Tanzania. Mycological Research, 101, 815–820.CrossRefGoogle Scholar
  17. Mcdonald, B. A., & Linde, C. (2002). Pathogen population genetics, evolutionary potential, and durable resistance. Annual Review of Phytopathology, 40, 349–379.CrossRefGoogle Scholar
  18. Milgroom, M. G., & Peever, T. L. (2003). Population biology of plant pathogens: The synthesis of plant disease epidemiology and population genetics. Plant Disease, 87, 608–617.CrossRefGoogle Scholar
  19. Mohammadian, E., Javan-Nikkhah, M., Okhovvat, S. M., & Ghazanfari, K. (2011). Study on genetic diversity of Gibberella moniliformis and G. intermedia from corn and rice, and determination of fertility status and of mating type idiomorphs. Australian Journal of Crop Science, 5, 1448–1454.Google Scholar
  20. Nelson, P. E., Desjardins, A. E., & Plattner, R. D. (1993). Fumonisins, mycotoxins produced by Fusarium species: Biology, chemistry and significance. Annual Review of Phytopathology, 31, 233–252.CrossRefGoogle Scholar
  21. O’Donnell, K., Cigelnik, E., & Nirenberg, H. I. (1998). Molecular systematics and phylogeography of the Gibberella fujikuroi species complex. Mycologia, 90, 465–493.CrossRefGoogle Scholar
  22. Oerke, E. C. (2006). Crop losses to pests. Journal of Agricultural Science, 144, 31–43.CrossRefGoogle Scholar
  23. Reynoso, M. M., Torres, A. T., & Chulze, S. N. (2006). Biological species in the Gibberella fujikuroi species complex isolated from maize kernels in Argentina. Plant Pathology, 5, 350–355.CrossRefGoogle Scholar
  24. Rocha, L. O., Reis, G. M., Silva, V. N., Braghini, R., Teixeira, M. M. G., & Correa, B. (2011). Molecular characterization and fumonisin production by Fusarium verticillioides isolated from corn grains of different geographic origins in Brazil. International Journal of Food Microbiology, 145, 9–21.CrossRefGoogle Scholar
  25. Stumpf, R., Santos, J. D., Gomes, L. B., Silva, C. N., Tessmann, D. J., Ferreira, F. D., & Del Ponte, E. M. (2013). Fusarium species and fumonisins associated with maize kernels produced in Rio Grande do Sul state for the 2008/09 and 2009/10 growing seasons. Brazilian Journal of Microbiology, 44, 89–95.CrossRefGoogle Scholar
  26. Venturini, G., Assante, G., Toffolatti, S. L., & Vercesi, V. (2011). Mating behavior of a northern Italian population of Fusarium verticillioides associated with maize. Journal of Applied Genetics, 52, 367–370.CrossRefGoogle Scholar
  27. Wright, S. (1931). Evolution in Mendelian populations. Genetics, 16, 97–159.PubMedPubMedCentralGoogle Scholar
  28. Zambolim, L., & Pereira, O. L. (2012). Isolamento de fungos. In L. Zambolim, W. C. Jesus Júnior, & O. L. Pereira (Eds.), O essencial da Fitopatologia (pp. 253–286). Viçosa: UFV.Google Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2019

Authors and Affiliations

  • André Angelo Medeiros Gomes
    • 1
    Email author
  • Maruzanete Pereira de Melo
    • 2
  • Dauri José Tessmann
    • 3
  • Cristiano Souza Lima
    • 4
    Email author
  1. 1.Departamento de Agronomia, Área de FitossanidadeUniversidade Federal Rural de PernambucoRecifeBrazil
  2. 2.Universidade Federal do AcreCruzeiro do SulBrazil
  3. 3.Departamento de AgronomiaUniversidade Estadual de MaringáMaringáBrazil
  4. 4.Departamento de Fitotecnia, Setor de FitossanidadeUniversidade Federal do CearáFortalezaBrazil

Personalised recommendations