Ztf1, an Ustilago maydis transcription factor involved in virulence

  • John Martin Velez-Haro
  • Domingo Martínez-Soto
  • Lorenzo Guevara-Olvera
  • José Ruiz-HerreraEmail author


Ustilago maydis (DC.) Cda., the causal agent of common corn smut, is considered an important model to analyze fundamental problems of fungal development and virulence. In this work, we proceeded to analyze the characteristics and role in Zea mays and Arabidopsis thaliana virulence of the UMAG_02301 gene encoding an important and conserved transcription factor (ZTF1) that is over-expressed in the experimental pathosystem U. maydis/A. thaliana. Mutants in this gene were deficient in virulence to both, A. thaliana and Z. mays, and affected in the yeast-to-mycelium dimorphic transition induced by use of a fatty acid as carbon source, but not by acid pH. In addition, it was observed that the gene was positively or negatively regulated by different kinds of stress. The observation that the gene is involved in virulence to both, its natural host, maize, and the experimental host, A. thaliana, is evidence of the usefulness of the U. maydis/A. thaliana pathosystem for the study of the virulence mechanisms of the fungus.


Ustilago maydis Maize pathogenesis Arabidopsis thaliana Plant disease Stress conditions 



This project was partially supported by Consejo Nacional de Cencia y Tecnología (CONACYT), México. JMVH was a Doctoral student supported with a fellowship from CONACYT. Thanks are given to Claudia León-Ramírez, Mayela F. Salazar-Chavez, and Drs. Cinthia V. Soberanes-Gutiérrez, and Alejandro Sánchez-Arreguín for their help or guidance in the application of different techniques.

Compliance with ethical standards

All the authors declare that this research article is not submitted elsewhere for publication and they are aware of the ethical responsibilities required for this journal for the submission of manuscripts.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10658_2019_1877_MOESM1_ESM.pdf (10 kb)
ESM 1 (PDF 9 kb)
10658_2019_1877_MOESM2_ESM.pdf (190 kb)
ESM 2 (PDF 189 kb)
10658_2019_1877_MOESM3_ESM.pdf (210 kb)
ESM 3 (PDF 209 kb)
10658_2019_1877_MOESM4_ESM.pdf (241 kb)
ESM 4 (PDF 240 kb)


  1. Banuett, F., & Herskowitz, I. (1996). Discrete developmental stages during teliospore formation in the corn smut fungus, Ustilago maydis. Development, 122, 2965–2976.PubMedGoogle Scholar
  2. Dean, R., Van Kan, J. A., Pretorius, Z. A., Hammond-Kosack, K. E., Di Pietro, A., Spanu, P. D., Rudd, J. J., Dickman, M., Kahmann, R., Ellis, J., & Foster, G. D. (2012). The top 10 fungal pathogens in molecular plant pathology. Molecular Plant Pathology, 13, 414–430.CrossRefGoogle Scholar
  3. Donaldson, M. E., Ostrowski, L. A., Goulet, K. M., & Saville, B. J. (2017). Transcriptome analysis of smut fungi reveals widespread intergenic transcription and conserved antisense transcript expression. BMC Genomics, 18, 340–353.CrossRefGoogle Scholar
  4. Flor-Parra, I., Vranes, M., Kämper, J., & Pérez-Martin, J. (2006). Biz1, a zinc finger protein required for plant invasion by Ustilago maydis, regulates the levels of a mitotic cyclin. Plant Cell, 18, 2369–2387.CrossRefGoogle Scholar
  5. García-Pedrajas, M. D., Baeza-Montañez, L., & Gold, S. E. (2010). Regulation of Ustilago maydis dimorphism, sporulation, and pathogenic development by a transcription factor with a highly conserved APSES domain. Molecular Plant-Microbe Interactions, 23, 211–222.CrossRefGoogle Scholar
  6. Heimel, K., Scherer, M., Vranes, M., Wahl, R., Pothiratana, C., Schuler, D., Vincon, V., Finkernagel, F., Flor-Parra, I., & Kämper, J. (2010). The transcription factor Rbf1 is the master regulator for b-mating type controlled pathogenic development in Ustilago maydis. PLoS Pathogens, 6, e1001035.CrossRefGoogle Scholar
  7. Hoffman, C. S., & Winston, F. (1987). A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli. Gene, 57, 267–272.CrossRefGoogle Scholar
  8. Holliday, R. (1974). Ustilago maydis. In R. C. King (Ed.), Hanbook of genetics, Bacteria, bacteriophages, and Fungi (Vol. 1, pp. 575–595). New York: Springer Science+Business Media.Google Scholar
  9. Jung, K. W., Yang, D. H., Maeng, S., Lee, K. T., So, Y. S., Hong, J., et al. (2015). Systematic functional profiling of transcription factor networks in Cryptococcus neoformans. Nature Communications, 6, 6757.CrossRefGoogle Scholar
  10. Klose, J., de Sá, M. M., & Kronstad, J. W. (2004). Lipid-induced filamentous growth in Ustilago maydis. Molecular Microbiology, 52, 823–835.CrossRefGoogle Scholar
  11. Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33, 1870–1874.CrossRefGoogle Scholar
  12. Lanver, D., Tollot, M., Schweizer, G., Lo Presti, L., Reissmann, S., Ma, L. S., Schuster, M., Tanaka, S., Liang, L., Ludwig, N., & Kahmann, R. (2017). Ustilago maydis effectors and their impact on virulence. Nature Reviews Microbiology, 15, 409–421.CrossRefGoogle Scholar
  13. León-Ramírez, C. G., Cabrera-Ponce, J. L., Martínez-Espinoza, A. D., Herrera-Estrella, L., Méndez, L., Reynaga-Peña, C. G., & Ruiz-Herrera, J. (2004). Infection of alternative host plant species by Ustilago maydis. New Phytologist, 164, 337–346.CrossRefGoogle Scholar
  14. León-Ramírez, C. G., Sánchez-Arreguín, J. A., & Ruiz-Herrera, J. (2014). Ustilago maydis, a delicacy of the Aztec cuisine and a model for research. Natural Resources, 5, 256–267.CrossRefGoogle Scholar
  15. León-Ramírez, C. G., Cabrera-Ponce, J. L., Martínez-Soto, D., Sánchez-Arreguin, A., Aréchiga-Carvajal, E. T., & Ruiz-Herrera, J. (2017). Transcriptomic analysis of basidiocarp development in Ustilago maydis (DC) Cda. Fungal Genetics and Biology, 101, 34–45.CrossRefGoogle Scholar
  16. Lewis, J. A., & Gasch, A. P. (2012). Natural variation in the yeast glucose-signaling network reveals a new role for the Mig3p transcription factor. G3 (Bethesda), 2, 1607–1612.CrossRefGoogle Scholar
  17. Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2 -∆∆CT method. Methods, 25, 402–408.CrossRefGoogle Scholar
  18. Mailloux, J. R., & Harper, M. E. (2012). Mitochondrial proticity and ROS signaling: Lessons from the uncoupling proteins. Trends in Endocrinology and Metabolism, 23, 451–458.CrossRefGoogle Scholar
  19. Martinez-Espinosa, A. D., Leon, C., Elizarraraz, G., & Ruiz-Herrera, J. (1997). Monomorphic nonpathogenic mutants of Ustilago maydis. Phytopathology, 87, 259–265.CrossRefGoogle Scholar
  20. Martínez-Espinoza, A. D., García-Pedrajas, M. D., & Gold, S. E. (2002). The Ustilaginales as plant pests and model systems. Fungal Genomics and Biology, 35, 1–20.CrossRefGoogle Scholar
  21. Martínez-Soto, D., Robledo-Briones, A. M., Estrada-Luna, A., & Ruiz-Herrera, J. (2013). Transcriptomic analysis of Ustilago maydis infecting Arabidopsis reveals important aspects of the fungus pathogenic mechanisms. Plant Signaling & Behavior, 8, e25059.CrossRefGoogle Scholar
  22. Mazaheri-Naeini, M., Sabbagh, S. K., Martinez, Y., Séjalon-Delmas, N., & Roux, C. (2015). Assessment of Ustilago maydis as a fungal model for root infection studies. Fungal Biology, 119, 145–153.CrossRefGoogle Scholar
  23. Méndez-Morán, L., Reynaga-Peña, C. G., Springer, P. S., & Ruiz-Herrera, J. (2005). Ustilago maydis infection of the non-natural host Arabidopsis thaliana. Phytopathology, 95, 480–488.CrossRefGoogle Scholar
  24. Rabe, F., Seitner, D., Bauer, L., Navarrete, F., Czedik-Eysenberg, A., Rabanal, F. A., & Djamei, A. (2016). Phytohormone sensing in the biotrophic fungus Ustilago maydis - the dual role of the transcription factor Rss1. Molecular Microbiology, 102, 290–305.CrossRefGoogle Scholar
  25. Robledo-Briones, M., & Ruiz-Herrera, J. (2012). Transcriptional regulation of the genes encoding chitin and β-1,3-glucan synthases from Ustilago maydis. Current Microbiology, 65, 85–90.CrossRefGoogle Scholar
  26. Ruiz-Herrera, J., León-Ramirez, C., Guevara-Olvera, L., & Cárabez-Trejo, A. (1995). Yeast-mycelial dimorphism of haploid and diploid strains of Ustilago maydis. Microbiology, 141, 695–703.CrossRefGoogle Scholar
  27. Todd, R. B., Zhou, M., Ohm, R. A., Leeggangers, H. A., Visser, L., & de Vries, R. P. (2014). Prevalence of transcription factors in ascomycete and basidiomycete fungi. BMC Genomics, 15, 214.CrossRefGoogle Scholar
  28. Tsukuda, T., Carleton, S., Fotheringham, S., & Holloman, W. K. (1988). Isolation and characterization of an autonomously replicating sequence from Ustilago maydis. Molecular and Cellular Biology, 8, 3703–3709.CrossRefGoogle Scholar
  29. Yu, J. H., Hamari, Z., Han, K. H., Seo, J. A., Reyes-Dominguez, Y., & Scazzocchio, C. (2004). Double-joint PCR: A PCR-based molecular tool for gene manipulations in filamentous fungi. Fungal Genetics and Biology, 41, 973–981.CrossRefGoogle Scholar
  30. Zahiri, A., Heimel, K., Wahl, R., Rath, M., & Kamper, J. (2010). The Ustilago maydis forkhead transcription factor Fox1 is involved in the regulation of genes required for the attenuation of plant defenses during pathogenic development. Molecular Plant-Microbe Interactions, 23, 1118–1129.CrossRefGoogle Scholar
  31. Zheng, Y., Kief, J., Auffarth, K., Farfsing, J. W., Mahlert, M., Nieto, F., & Basse, C. W. (2008). The Ustilago maydis Cys2His2-type zinc finger transcription factor Mzr1 regulates fungal gene expression during the biotrophic growth stage. Molecular Microbiology, 68, 1450–1470.CrossRefGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2019

Authors and Affiliations

  1. 1.Departamento de Ingeniería BioquímicaInstituto Tecnológico de CelayaCelayaMexico
  2. 2.Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del IPNIrapuatoMexico
  3. 3.Ingeniería en Innovación Agrícola SustentableInstituto Tecnológico Superior de Los ReyesLos ReyesMexico

Personalised recommendations