Characterisation of the interaction of Pseudomonas putida and Pseudomonas tolaasii with Trichoderma aggressivum

  • 69 Accesses


Green mould disease is caused by Trichoderma aggressivum which colonizes mushroom compost and reduces yield. Two Pseudomonas species are associated with mushroom compost: Pseudomonas putida, which stimulates mushroom pinning, and Pseudomonas tolaasii which has a negative effect on crop production. The aim of this work was to characterize T. aggressivum – Pseudomonas interactions as these may be important factors in the development of green mould disease. P. tolaasii supernatant inhibited growth by 57% but P. putida stimulated growth of T.aggressivum by 44%. Tolaasin production was identified in P. tolaasii cultures with a peak at 96 h. Fluorescent microscopy examination of T. aggressivum hyphae revealed that exposure to P. tolaasii supernatant decreased mycelial formation while increasing the abundance of conidia. Label free proteomic analysis of changes in the abundance of T. aggressivum proteins indicated that exposure to P. tolaasii supernatant lead to an oxidative stress response and catabolic enzyme activation (mitochondrial import inner membrane translocase complex (5.7-fold), oxidoreductase (5.2-fold), glucoamylase (5.1-fold)). Exposure of T. aggressivum to P. putida supernatant lead to an increase in the abundance of proteins associated with growth and development (structural constituents of ribosome (20-fold), H/ACA ribonucleoprotein complex subunit (18-fold), DNA binding and nucleosome assembly protein (5.3-fold), and prefoldin (5-fold)). These results indicate that exposure to P. putida can stimulate the growth of T. aggressivum and this interaction may be an important factor in increasing green mould disease in mushroom crops and so reducing yield.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4



False Discovery Rates


gene ontology


statistically significant differentially abundant


differentially expressed proteins (DEP)


Nutrient broth




  1. Barribeau, S. M., Sadd, B. M., Du Plessis, L., & Schmid-Hempel, P. (2014). Gene expression differences underlying genotype-by-genotype specificity in a host–parasite system. Proceedings of the National Academy of Sciences, 111, 3496–3501.

  2. Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society, Series B, 57(1), 289–300.

  3. Chang, S.-T., & Miles, P. G. (2004). Mushrooms. In Cultivation, nutritional value, medicinal effect, and environmental impact (2nd ed., p. 451). Boca Raton, CRC Press.

  4. Cho, K.-H., Kim, S.-T., & Kim, Y.-K. (2007). Purification of a pore-forming peptide toxin, Tolaasin, produced by Pseudomonas tolaasii 6264. Journal of Biochemistry and Molecular Biology, 40(1), 113–118.

  5. Clift, A. D., & Shamshad, A. (2009). Modeling mites, moulds and mushroom yields in the Australian mushroom industry. In R. S. Anderssen, R. D. Braddock, & L. T. H. Newham (Eds.), Proceedings of the 18th world IMACS/MODSIM 09 congress (pp. 491–497). Cairns: IMACS/MODSIM.

  6. Côté, R. G., Griss, J., Dianes, J. A., Wang, R., Wright, J. C., van den Toorn, H. W. P., et al. (2012). The PRoteomics IDEntification (PRIDE) converter 2 framework: An improved suite of tools to facilitate data submission to the PRIDE database and the ProteomeXchange consortium. Molecular & Cellular Proteomics, 11, 1682–1689.

  7. Fletcher, J. T., & Gaze, R. H. (2008). Mushroom Pest and disease control. London: Manson Publishing.

  8. Geels, F. P. (1997). Rondetafel – bijeenkomst over Trichoderma. Champignoncultuur., 41, 13.

  9. Godfrey, S. A. C., Harrow, S. A., Marshall, J. W., & Klena, J. D. (2001). Characterization by 16S rRNA sequence analysis of Pseudomonas causing blotch disease of cultivated Agaricus bisprus. Applied and Environmental Microbiology, 67(9), 4316–4323.

  10. Grewal, S. I. S., & Rainey, P. B. (1991). Phenotypic variation of Pseudomonas putida and P. tolizasii affects the chemotactic response to Agaricus bisporus mycelial exudate. Journal of General Microbiology, 137, 2761–2768.

  11. Grogan, H. M. (2008). Challenges facing mushroom disease control in the 21st century. In J. I. Lelley & J. A. Buswell (Eds.), Proceeding of the sixth international conference on mushroom biology and mushroom products (pp. 120–127). Bonn, Germany: WSMBMP.

  12. Hatvani, L., Antal, Z., Manczinger, L., Szekeres, A., Druzhinina, I. S., Kubicek, C. P., Nagy, A., Nagy, E., Vagvolgyi, C., & Kredics, L. (2007). Green mold diseases of Agaricus and Pleurotus are caused by related but phylogenetically different Trichoderma species. Phytopathology., 97, 532–537.

  13. Hatvani, L., Sabolic, P., Koscube, S., Kredics, L., Vagvolgyi, C., Kaliterna, J., Ivic, D., Dermic, E., & Kosalec, I. (2012). The first report on mushroom green mould in Croatia. Archives of Industrial Hygiene and Toxicology, 63, 481–487.

  14. Hermosa, M. R., Grondona, I., & Monte, E. (1999). Isolation of Trichoderma harzianum Th2 from commercial mushroom compost in Spain. Plant Disease, 83, 591.

  15. Hutchison, M. I., & Johnstone, K. (1993). Evidence for the involvement of the surface active properties of the extracellular toxin tolaasin in the manifestation of brown blotch disease symptoms by Pseudomonas tolaasii on Agaricus bisporus. Physiological and Molecular Plant Pathology, 42, 273–384.

  16. Kosanovic, D., Potocnik, I., Duduk, B., Vukojevic, J., Stajic, M., Rekanovic, E., & Milijasevic-Marcic, S. (2013). Trichoderma species on Agaricus bisporus farms in Serbia and their biocontrol. The Annals of Applied Biology, 163, 218–230.

  17. Kosanovic, D., Potocnik, I., Vukojevic, J., Stajic, M., Rekanovic, E., Stepanovic, M., & Todorovic, B. (2015). Fungicide sensitivity of Trichoderma spp. from Agaricus bisporus farms in Serbia. Journal of Environmental Science and Health Part B Pesticides Food Contaminants and Agricultural Wastes., 50(8), 607–613.

  18. Kredics, L., Jimenez, L.G., Naeimi, S., Czifra, D., Urban, P, Manczinger, L., Vagvolgyi, C., Hatvani L. (2010) A chalenge to mushroom growers: the green mould disease of cultivated champignons. Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology. pp. 295–305.

  19. Krupke, O. A., Castle, A. J., & Rinker, D. L. (2003). The north American mushroom competitor, Trichoderma aggressivum f. aggressivum, produces antifungal compounds in mushroom compost that inhibit mycelial growth of the commercial mushroom Agaricus bisporus. Mycological Research, 107(12), 1467–1475.

  20. Maher, A., Staunton, K., & Kavanagh, K. (2018). Analysis of the effect of temperature on protein abundance in Demodex-associated Bacillus oleronius. Pathogens and Disease, 75, fty032.

  21. Mamoun, M. L., Iapicco, R., Savoie, J.-M., & Olivier, J. M. (2000). Green mould disease in France: Trichoderma harzianum Th2 and other species causing damage on mushroom farms. Mushroom Science., 15, 625–632.

  22. Mc Namara, L., Carolan, J. C., Griffin, C. T., Fitzpatrick, D., & Kavanagh, K. (2017). Analysis of the effect of entomopathogenic fungal culture filtrate on the immune response of the greater wax moth. Galleria mellonella. Journal of Insect Physiology., 100, 82–92.

  23. Mohammad, A., & Sabaa, A. K. (2015). In virto and in vivo impact of some Pseudomonas spp. on growth and yield of cultivated mushroom (Agaricus bisporus). Egyptian Journal of Experimental Biology (Botany)., 11(2), 163–167.

  24. Noble, R., Dobrovin-Pennington, A., Hobbs, P. J., Pederby, J., & Rodger, A. (2009). Volatile C8 compounds and pseudomonads influence primordium formation of Agaricus bisporus. Mycologia., 101(5), 583–591.

  25. Nutkins, J. C., Mortishire-Smith, R. J., Packman, L. C., Brodey, C. L., Rainey, P. B., Johnstone, K., & Williams, D. H. (1991). Structure determination of tolaasin, an extracellular lipodepsipeptide produced by the mushroom pathogen Pseudomonas tolaasii Paine. Journal of the American Chemical Society, 113, 2621–2627.

  26. O’Brien, M., Kavanagh, K., & Grogan, H. (2017). Detection of Trichoderma aggressivum in bulk phase III substrate and the effect of T. aggressivum inoculum, supplementation and substrate-mixing on Agaricus bisporus yields. European Journal of Plant Pathology, 147(1), 199–209.

  27. Osdaghi, E., Martins, S. J., Ramos-Sepulveda, L., Rocha Vieira, F., Pecchia, J. A., Meigs Beyer, D., Bell, T. H., Yang, Y., Hockett, K. L., & Bull, C. T. (2019). 100 years since Tolaas: Bacterial blotch of mushrooms in the 21st century.

  28. Pandin, C., Le Coq, D., Deschamps, J., Vedic, R., Rousseau, T., Aymerich, S., & Briandet, R. (2018). Complete genome sequence of Bacillus velezensis QST713: A biocontrol agent that protects Agaricus bisporus crops against green mould disease. Journal of Biotechnology, 278, 10–19.

  29. Park, J. Y., & Agnihotri, V. P. (1969). Bacterial metabolites trigger sporophore formation in Agaricus bisporus. Nature., 222, 984.

  30. Potocnik, I., Vukojevic, J., Stajic, M., Kosanovic, D., Rekanovic, E., Stepanovic, M., & Milijasevic-Marcic, S. (2012). Impact of fungicides used for wheat treatment on button mushroom cultivation. Journal of Pesticides and Phytomedicine., 27(1), 9–14.

  31. Potocnik, I., Rekanovic, E., Todorovic, B., Lukovic, J., Paunovic, D., Stanojevic, O., & Milijasevic-Marcic, S. (2019). The effects of casing soil treatment with bacillus subtilis Ch-13 biofungicide on green mould control and mushroom yield. Journal of Pesticides and Phytomedicine., 34(1), 53–60.

  32. Rainey, P. B. (1991). Effect of Pseudomonas putida on hyphal growth of Agricus bisporus. Mycological Research, 95, 699–704.

  33. Rinker, D. L. (1993). Disease management strategies for Trichoderma mould. Mushroom World., 4, 3–5.

  34. Romaine, C. P., Royse, D. J., Wuest, P. J., & Beyer, D. M. (1996). Mushroom green mould: Cause, edaphic factors and control. Mushroom News., 44, 20–23.

  35. Romero-Arenas, O., Lara, M. H., Huato, M. A. D., Hernandez, F. D., & Victoria, D. A. A. (2009). The characteristics of Trichoderma harzianum as a limiting agent in edible mushrooms. Revista Colombiana de Biotecnología, 11, 143–151.

  36. Royse, D. J., Baars, J., & Tan, Q. (2017). Current overview of mushroom production in the world. In D. C. Zied & A. Pardo-Giménez (Eds.), Edible and medicinal mushrooms: Technology and applications (1st ed., pp. 2–13). Wiley.

  37. Samuels, G.J., Dodd, S.L., Gams, W., Castlebury, L.A., Petrini, O. (2002) Trichoderma species associated with the green mold epidemic of commercially grown Agaricus bisporus. Mycologia, 94, 146–170.

  38. Saxon, E. B., Jackson, R. W., Bhumbra, S., Smith, T., & Sockett, R. E. (2014). Bdellovibrio bacteriovorus HD100 guards against Pseudomonas tolaasii brown-blotch lesions on the surface of post-harvest Agaricus bisporus supermarket mushrooms. BMC Microbiology, 14, 163.

  39. Seaby, D. A. (1987). Infection of mushroom compost by Trichoderma species. Mushroom Journal., 179, 355–361.

  40. Seaby, D. A. (1996). Investigation of the epidemiology of green mold of mushroom (Agaricus bisporus) compost caused by Trichoderma harzianum. Plant Pathology, 45, 913–923.

  41. Sinden, J., & Hauser, E. (1953). Nature and control of three mildew diseases of mushrooms in America. Mushroom Science., 2, 177–180.

  42. Soler-Rivas, C., Jolivet, S., Arpin, N., Olivier, J. M., & Wichers, H. J. (1999). Biochemical and physiological aspects of brown blotch disease of Agaricus bisporus. FEMS Microbiology Reviews, 23(5), 591–614.

  43. Soler-Rivas, C., Arpin, N., Olivier, J. M., & Wichers, H. J. (2000). Discoloration and tyrosinase activity in Agaricus bisporus fruit bodies infected with various pathogens. Mycological Research, 104(3), 351–356.

  44. Szczech, M., Staniaszek, M., Habdas, H., Ulinski, Z., & Szymanski, J. (2008). Trichoderma spp. – The cause of green mould on polish mushroom farms. Vegetable Crops Research Bulletin., 69, 105–114.

  45. Tolaas, A. G. (1915). A bacterial disease of cultivated mushrooms. Phytopathology., 5, 51–54.

  46. Watson, A. K., Williams, T. A., Williams, B. A., Moore, K. A., Hirt, R. P., & Embley, T. M. (2015). Transcriptomic profiling of host-parasite interactions in the microsporidian Trachipleistophora hominis. BMC Genomics, 16, 975–983.

  47. Wells, J. M., Sapers, G. M., Fett, W. F., Butterfield, J. E., Jones, J. B., Bouzar, H., & Miller, F. C. (1996). Postharvest discoloration of the cultivated mushroom Agaricus bisporus caused by Pseudomonas tolaasii, P. ‘reactans’, and P. ‘gingeri’. Phytopathology, 86, 1098–1104.

  48. Wong, W. C., Fletcher, J. T., Unsworth, B. A., & Preece, T. F. (1982). A note on ginger blotch, a new bacterial disease of the cultivated mushroom. Agaricus bisporus. Journal of Applied Bacteriology., 52, 43–48.

  49. Yates, J. R., Ruse, C. I., & Nakorchevsky, A. (2009). Proteomics by mass spectrometry: Approaches, advances, and applications. Annual Review of Biomedical Engineering, 11, 49–79.

  50. Young, J. M. (1970). Drippy gill: A bacterial disease of cultivated mushrooms caused by Pseudomonas agarici n.sp. New Zealand Journal of Agricultural Research, 13(4), 977–990.

  51. Zarenejad, F., Yakhchali, B., & Rasooli, I. (2012). Evaluation of indigenous potent mushroom growth promoting bacteria (MGPB) on Agaricus bisporus production. World Journal of Microbiology and Biotechnology, 28(1), 99–104.

  52. Zhang, Y., Fonslow, B. R., Shan, B., Baek, M.-C., & Yates III, J. R. (2013). Protein analysis by shotgun/bottom-up proteomics. Chemical Reviews, 113, 2343–2394.

  53. Zhu, J.-Y., Yang, P., Zhang, Z., Wu, G.-X., & Yang, B. (2013). Transcriptomic immune response of Tenebrio molitor pupae to parasitization by Scleroderma guani. PLoS One, 8, e54411.

Download references


DK is a Postdoctoral Fellow supported by Irish Research Council. GS is the recipient of a Maynooth University Doctoral Hume scholarship. Q-Exactive mass spectrometer was funded under the SFI Research Infrastructure Call 2012; Grant Number: 12/RI/2346.

Author information

Correspondence to Kevin Kavanagh.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Human or animals participants

This article does not contain any study with human participants or animals performed by the authors.

Electronic supplementary material


(PDF 7834 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kosanovic, D., Sheehan, G., Grogan, H. et al. Characterisation of the interaction of Pseudomonas putida and Pseudomonas tolaasii with Trichoderma aggressivum. Eur J Plant Pathol 156, 111–121 (2020) doi:10.1007/s10658-019-01867-z

Download citation


  • Agaricus
  • Trichoderma
  • Proteomics
  • Pseudomonas