Advertisement

The root endophytic fungus Serendipita indica improves resistance of Banana to Fusarium oxysporum f. sp. cubense tropical race 4

  • 193 Accesses

Abstract

Serendipita indica is a root-colonizing basidiomycete that has received considerable attention in recent decades on account of its wide host range and the diverse benefits it imparts to host plants, including banana (Musa spp.). Banana is globally threatened by the fungal pathogen Fusarium oxysporum f. sp. cubense (Foc). In this study, to examine whether S. indica can improve the Foc resistance of banana, S. indica colonized (S+) and non-colonized (CK) ‘Tianbaojiao’ banana plants were inoculated with Foc tropical race 4 (TR4). Chlorophyll fluorescence parameters in leaves and antioxidant enzyme activities in roots of S+, CK, FocTR4-inoculated S+ plants (SF), and FocTR4-inoculated CK plants (F+) were determined and symptom appearance in corms of SF and F+ plants was observed. An analysis of antagonistic activity between S. indica and FocTR4 was performed and results showed that no significant differences in chlorophyll fluorescence parameters were displayed between CK and S+. No significant differences in Y(II) (effective quantum yield of photochemical energy in PSII) and Y(NPQ) (quantum yield of regulated energy dissipation in PSII) were exhibited among the four groups. However, the Fv/fm (ratio of variable to maximal fluorescence) values were significantly decreased (p < 0.01) in F+ and SF, and the Fv/fm value of SF was significantly improved than that of F+ (p < 0.05). The Y(NO) (quantum yield of non-regulated energy dissipation in PSII) was remarkable improved (p < 0.01) in F+ but not in SF. Although infection symptoms in SF were significantly alleviated compared with those of F+, no obvious antagonistic effect was observed between S. indica and FocTR4, indicating that the enhancement of FocTR4 resistance in banana was not directly induced by S. indica. Colonization by S. indica increased superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX) activities in S+. After FocTR4 inoculation, SOD activity was significantly compromised in F+ but not in SF; POD activity was drastically increased in both F+ and SF, and that in SF was significantly higher than in F+; CAT activity was significantly improved in S+, but no obvious change was observed in F+ and SF when compared with CK. Moreover, APX and glutathione reductase (GR) activities were enhanced dramatically in SF but not in F+ compared with CK. Results obtained in this study indicated that the beneficial effect of S. indica colonization on FocTR4 resistance of banana might be achieved, at least partly, through regulation of antioxidant enzyme activities.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Akiyama, K., Matsuzaki, K., & Hayashi, H. (2005). Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature, 435(7043), 824–827. https://doi.org/10.1038/nature03608.

  2. Al-Askar, A. A., & Rashad, Y. M. (2010). Arbuscular mycorrhizal fungi: A biocontrol agent against common bean Fusarium root rot disease. Plant Pathology Journal, 9(1), 31–38. https://doi.org/10.3923/ppj.2010.31.38.

  3. Alguacil, M. M., Hernandez, J. A., Caravaca, F., Portillo, B., & Roldan, A. (2003). Antioxidant enzyme activities in shoots from three mycorrhizal shrub species afforested in a degraded semi-arid soil. Physiologia Plantarum, 118(4), 562–570. https://doi.org/10.1034/j.1399-3054.2003.00149.x.

  4. Ansari, M. W., Trivedi, D. K., Sahoo, R. K., Gill, S. S., & Tuteja, N. (2013). A critical review on fungi mediated plant responses with special emphasis to Piriformospora indica on improved production and protection of crops. Plant Physiology and Biochemistry, 70, 403–410. https://doi.org/10.1016/j.plaphy.2013.06.005.

  5. Bagde, U. S., Ram, P., & Ajit, V. (2010). Interaction of mycobiont: Piriformospora indica with medicinal plants and plants of economic importance. African Journal of Biotechnology, 9(54), 9214–9226.

  6. Bagheri, A. A., Saadatmand, S., Niknam, V., Nejadsatari, T., & Babaeizad, V. (2014). Effects of Piriformospora indica on biochemical parameters of Oryza sativa under salt stress. International Journal of Biosciences, 4(4), 24–32. https://doi.org/10.12692/ijb/4.4.24-32.

  7. Baltruschat, H., Fodor, J., Harrach, B. D., Niemczyk, E., Barna, B., Gullner, G., Janeczko, A., Kogel, K. H., Schäfer, P., Schwarczinger, I., Zuccaro, A., & Skoczowski, A. (2008). Salt tolerance of barley induced by the root endophyte Piriformospora indica is associated with a strong increase in antioxidants. New Phytologist, 180(2), 501–510. https://doi.org/10.1111/j.1469-8137.2008.02583.x.

  8. Bütehorn, B., Rhody, D., & Franken, P. (2000). Isolation and characterisation of Pitef1 encoding the translation elongation factor EF-1α of the root endophyte Piriformospora indica. Plant Biology, 2(6), 687–692. https://doi.org/10.1055/s-2000-16647.

  9. Chen, L., Zhong, H. Y., Kuang, J. F., Li, J. G., Lu, W. J., & Chen, J. Y. (2011). Validation of reference genes for RT-qPCR studies of gene expression in banana fruit under different experimental conditions. Planta, 234(2), 377–390. https://doi.org/10.1007/s00425-011-1410-3.

  10. Deshmukh, S. D., & Kogel, K.-H. (2007). Piriformospora indica protects barley from root rot caused by Fusarium graminearum. Journal of Plant Diseases and Protection, 114(6), 263–268. https://doi.org/10.1007/bf03356227.

  11. Deshmukh, S., Hückelhoven, R., Schäfer, P., Imani, J., Sharma, M., Weiss, M., Waller, F., & Kogel, K.-H. (2006). The root endophytic fungus Piriformospora indica requires host cell death for proliferation during mutualistic symbiosis with barley. Proceedings of the National Academy of Sciences, 103(49), 18450–18457. https://doi.org/10.1073/pnas.0605697103.

  12. Dolatabadi, H. K., Goltapeh, E. M., Mohammadi, N., Rabiey, M., Rohani, N., & Varma, A. (2012). Biocontrol potential of root endophytic fungi and Trichoderma species against Fusarium wilt of lentil under In vitro and greenhouse conditions. Journal of Agricultural Science and Technology, 14, 407–420.

  13. Dong, L. Q., & Zhang, K. Q. (2006). Microbial control of plant-parasitic nematodes: A five-party interaction. Plant and Soil, 288(1–2), 31–45. https://doi.org/10.1007/s11104-006-9009-3.

  14. Fakhro, A., Andrade-Linares, D. R., von Bargen, S., Bandte, M., Büttner, C., Grosch, R., Schwarz, D., & Franken, P. (2010). Impact of Piriformospora indica on tomato growth and on interaction with fungal and viral pathogens. Mycorrhiza, 20(3), 191–200. https://doi.org/10.1007/s00572-009-0279-5.

  15. Fravel, D., Olivain, C., & Alabouvette, C. (2003). Fusarium oxysporum and its biocontrol. New Phytologist, 157(3), 493–502. https://doi.org/10.1046/j.1469-8137.2003.00700.x.

  16. García-Bastidas, F., Ordóñez, N., Konkol, J., Al-Qasim, M., Naser, Z., Abdelwali, M., Waalwijk, C., Ploetz, R. C., & Kema, G. H. J. (2014). First report of Fusarium oxysporum f. sp. cubense tropical race 4 associated with Panama disease of banana outside Southeast Asia. Plant Disease, 98(5), 694–694. https://doi.org/10.1094/PDIS-09-13-0954-PDN.

  17. George, E., Marschner, H., & Jakobsen, I. (1995). Role of arbuscular mycorrhizal fungi in uptake of phosphorus and nitrogen from soil. Critical Reviews in Biotechnology, 15(3–4), 257–270. https://doi.org/10.3109/07388559509147412.

  18. Gill, S. S., Gill, R., Trivedi, D. K., Anjum, N. A., Sharma, K. K., Ansari, M. W., Johri, A. K., Prasad, R., Pereira, E., Varma, A., & Tuteja, N. (2016). Piriformospora indica: potential and significance in plant stress tolerance. Frontiers in Microbiology, 7, 332. https://doi.org/10.3389/fmicb.2016.00332.

  19. Glaeser, S. P., Imani, J., Alabid, I., Guo, H., Kumar, N., Kämpfer, P., Hardt, M., Blom, J., Goesmann, A., Rothballer, M., Hartmann, A., & Kogel, K.-H. (2016). Non-pathogenic Rhizobium radiobacter F4 deploys plant beneficial activity independent of its host Piriformospora indica. The ISME Journal, 10(4), 871–884. https://doi.org/10.1038/ismej.2015.163.

  20. Hajipour, A., Sohani, M., Babaeizad, V., & Hassani-kumleh, H. (2015). The symbiotic effect of Piriformospora indica on induced resistance against bakanae disease in rice (Oryza sativa L.). Journal of Plant Molecular Breeding, 3, 11–19.

  21. Harrach, B. D., Baltruschat, H., Barna, B., Fodor, J., & Kogel, K.-H. (2013). The mutualistic fungus Piriformospora indica protects barley roots from a loss of antioxidant capacity caused by the necrotrophic pathogen Fusarium culmorum. Molecular Plant-Microbe Interactions, 26(5), 599–605. https://doi.org/10.1094/MPMI-09-12-0216-R.

  22. Hosseini, F., Reza, M., & Roger, A. (2017). Effect of the fungus Piriformospora indica on physiological characteristics and root morphology of wheat under combined drought and mechanical stresses. Plant Physiology et Biochemistry, 118, 107–120. https://doi.org/10.1016/j.plaphy.2017.06.005.

  23. Hui, F., Liu, J., Gao, Q., & Lou, B. (2015). Piriformospora indica confers cadmium tolerance in Nicotiana tabacum. Journal of Environmental Sciences, 37(11), 184–191. https://doi.org/10.1016/j.jes.2015.06.005.

  24. Hwang, S., & Ko, W. (2004). Cavendish banana cultivars resistant to Fusarium wilt acquired through somaclonal variation in Taiwan. Plant Disease, 88(6), 580–588. https://doi.org/10.1094/PDIS.2004.88.6.580.

  25. Jacobs, S., Zechmann, B., Molitor, A., Trujillo, M., Petutschnig, E., Lipka, V., Kogel, K.-H., & Schäfer, P. (2011). Broad-spectrum suppression of innate immunity is required for colonization of Arabidopsis roots by the fungus Piriformospora indica. Plant Physiology, 156(2), 726–740. https://doi.org/10.1104/pp.111.176446.

  26. Jiang, Y., Wang, W., Xie, Q., Liu, N., Liu, L., Wang, D., Zhang, X., Yang, C., Chen, X., Tang, D., & Wang, E. (2017). Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi. Science, 356(6343), 1172–1173. https://doi.org/10.1126/science.aam9970.

  27. Jie, L., Zifeng, W., Lixiang, C., Hongming, T., Patrik, I., Zide, J., & Shining, Z. (2009). Artificial inoculation of banana tissue culture plantlets with indigenous endophytes originally derived from native banana plants. Biological Control, 51(3), 427–434. https://doi.org/10.1016/j.biocontrol.2009.08.002.

  28. Johnson, J. M., Lee, Y.-C., Camehl, I., Sun, C., Yeh, K.-W., & Oelmüller, R. (2013). Piriformospora indica promotes growth of Chinese cabbage by manipulating Auxin homeostasis: role of Auxin in P. indica symbioses. In Piriformospora indica, Soil Biology (pp. 139–147). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33802-1_8.

  29. Johnson, J. M., Alex, T., & Oelmüller, R. (2014). Piriformospora indica: The versatile and multifunctional root endophytic fungus for enhanced yield and tolerance to biotic and abiotic stress in crop plants. Journal of Tropical Agriculture, 52(2), 103–122.

  30. Kari Dolatabadi, H., Mohammadi Goltapeh, E., Mohammadi, N., Rabiey, M., Rohani, N., & Varma, A. (2012). Biocontrol potential of root endophytic fungi and Trichoderma species against Fusarium wilt of lentil under in vitro and greenhouse conditions. Journal of Agricultural Science and Technology, 14(2), 407–420.

  31. Khatabi, B., Molitor, A., Lindermayr, C., Pfiffi, S., Durner, J., von Wettstein, D., Kogel, K. H., & Schäfer, P. (2012). Ethylene supports colonization of plant roots by the mutualistic fungus Piriformospora indica. PLoS One, 7(4), e35502. https://doi.org/10.1371/journal.pone.0035502.

  32. Kumar, M., Yadav, V., Tuteja, N., & Johri, A. K. (2009). Antioxidant enzyme activities in maize plants colonized with Piriformospora indica. Microbiology, 155(3), 780–790. https://doi.org/10.1099/mic.0.019869-0.

  33. Kumari, R., Kishan, H., Bhoon, Y. K., & Varma, A. (2003). Colonization of cruciferous plants by Piriformospora indica. Current Science, 85(12), 1672–1674.

  34. Lakshmipriya, P., Nath, S. V., Veena, S. S., Anith, K. N., Sreekumar, J., & Jeeva, M. L. (2017). Piriformospora indica, a cultivable endophyte for growth promotion and disease management in Taro (Colocasia esculenta L.). Journal of Root Crops, 42(2), 107–114.

  35. Li, M. H., Yu, X. T., Wang, H. F., Zhou, J. N., Xi, P. G., & Jiang, Z. D. (2012). Rapid detection and identification of Fusarium oxysporum f. sp. cubense race 1 and race 4. Scientia Agricultura Sinica, 45(19), 3971–3979. (in Chinese). https://doi.org/10.3864/j.issn.0578-1752.2012.19.008.

  36. Luginbuehl, L. H., Menard, G. N., Kurup, S., Van Erp, H., Radhakrishnan, G. V., Breakspear, A., Oldroyd, G. E. D., & Eastmond, P. J. (2017). Fatty acids in arbuscular mycorrhizal fungi are synthesized by the host plant. Science (New York, N.Y.), 356(6343), 1175–1178. https://doi.org/10.1126/science.aan0081.

  37. Madaan, G., Gosal, S. K., Gosal, S. S., Saroa, G. S., & Gill, M. I. S. (2013). Effect of microbial inoculants on the growth and yield of micropropagated banana (Musa indica) cv. Grand Naine. Journal of Horticultural Science and Biotechnology, 88(5), 643–649. https://doi.org/10.1080/14620316.2013.11513019.

  38. Moffat, A. S. (1999). Crop engineering goes south. Science (New York, N.Y.), 285(5426), 370–371. https://doi.org/10.1126/science.285.5426.370.

  39. Mohd, S., Shukla, J., Kushwaha, A. S., Mandrah, K., Shankar, J., Arjaria, N., Saxena, P. N., Narayan, R., Roy, S. K., & Kumar, M. (2017). Endophytic fungi Piriformospora indica mediated protection of host from arsenic toxicity. Frontiers in Microbiology, 8, 754. https://doi.org/10.3389/fmicb.2017.00754.

  40. Nanda, R., & Agrawal, V. (2018). Piriformospora indica, an excellent system for heavy metal sequestration and amelioration of oxidative stress and DNA damage in Cassia angustifolia Vahl under copper stress. Ecotoxicology and Environmental Safety, 156, 409–419. https://doi.org/10.1016/j.ecoenv.2018.03.016.

  41. Newsham, K. K., Fitter, A. H., & Watkinson, A. R. (1995). Multi-functionality and biodiversity in arbuscular mycorrhizas. Trends in Ecology & Evolution, 10(10), 407–411. https://doi.org/10.1016/S0169-5347(00)89157-0.

  42. Peškan-Berghöfer, T., Shahollari, B., Pham, H. G., Hehl, S., Markert, C., Blanke, V., Kost, G., Varma, A., & Oelmüller, R. (2004). Association of Piriformospora indica with Arabidopsis thaliana roots represents a novel system to study beneficial plant-microbe interactions and involves early plant protein modifications in the endoplasmic reticulum and at the plasma membrane. Physiologia Plantarum. https://doi.org/10.1111/j.1399-3054.2004.00424.x.

  43. Ploetz, R. C. (2015). Fusarium wilt of Banana. Phytopathology, 105(12), 1512–1521. https://doi.org/10.1094/PHYTO-04-15-0101-RVW.

  44. Rabiey, M., & Shaw, M. W. (2016). Piriformospora indica reduces Fusarium head blight disease severity and mycotoxin DON contamination in wheat under UK weather conditions. Plant Pathology, 65(6), 940–952. https://doi.org/10.1111/ppa.12483.

  45. Rabiey, M., Ullah, I., & Shaw, M. W. (2013). The effect of Piriformospora indica, an endophytic fungus, on wheat resistance to Fusarium disease. Aspects of Applied Biology, 120, 91–94.

  46. Rabiey, M., Ullah, I., & Shaw, M. W. (2015). The endophytic fungus Piriformospora indica protects wheat from fusarium crown rot disease in simulated UK autumn conditions. Plant Pathology, 64(5), 1029–1040. https://doi.org/10.1111/ppa.12335.

  47. Rabiey, M., Ullah, I., Shaw, L. J., & Shaw, M. W. (2017). Potential ecological effects of Piriformospora indica, a possible biocontrol agent, in UK agricultural systems. Biological Control. https://doi.org/10.1016/j.biocontrol.2016.10.005.

  48. Roylawar, P., Panda, S., & Kamble, A. (2015). Comparative analysis of BABA and Piriformospora indica mediated priming of defence-related genes in tomato against early blight. Physiological and Molecular Plant Pathology, 91, 88–95. https://doi.org/10.1016/j.pmpp.2015.06.004.

  49. Schouteden, N., De Waele, D., Panis, B., & Vos, C. M. (2015). Arbuscular mycorrhizal fungi for the biocontrol of plant-parasitic nematodes: A review of the mechanisms involved. Frontiers in Microbiology, 6(NOV), 1–12. https://doi.org/10.3389/fmicb.2015.01280.

  50. Shahabivand, S., Parvaneh, A., & Asghar, A. (2017). Root endophytic fungus Piriformospora indica affected growth, cadmium partitioning and chlorophyll fluorescence of sunflower under cadmium toxicity. Ecotoxicology and Environmental Safety, 145, 496–502. https://doi.org/10.1016/j.ecoenv.2017.07.064.

  51. Sharma, P., Kharkwal, A. C., Abdin, M. Z., & Varma, A. (2017). Piriformospora indica -mediated salinity tolerance in Aloe vera plantlets. Symbiosis, 72(2), 103–115. https://doi.org/10.1007/s13199-016-0449-0.

  52. Shen, Z., Zhong, S., Wang, Y., Wang, B., Mei, X., Li, R., Ruan, Y., & Shen, Q. (2013). Induced soil microbial suppression of banana fusarium wilt disease using compost and biofertilizers to improve yield and quality. European Journal of Soil Biology, 57(4), 1–8. https://doi.org/10.1016/j.ejsobi.2013.03.006.

  53. Shen, Z., Wang, B., Lv, N., Sun, Y., Jiang, X., Li, R., Ruan, Y., & Shen, Q. (2015). Effect of the combination of bio-organic fertiliser with Bacillus amyloliquefaciens NJN-6 on the control of banana Fusarium wilt disease, crop production and banana rhizosphere culturable microflora. Biocontrol Science and Technology, 25(6), 716–731. https://doi.org/10.1080/09583157.2015.1010482.

  54. Shende, S., Bhagwat, K., Wadegaonkar, P., Rai, M., Varma, A., & Rai, M. K. (2005). Piriformospora indica as a new and emerging mycofertilizer and biotizer: Potentials and prospects in sustainable agriculture. Handbook of microbial biofertilizers. Food Products Press, New York, 477–496.

  55. Smith, S., & Read, D. (2008). Mycorrhizal Symbiosis (second.). Elsevier. https://doi.org/10.1016/B978-0-12-370526-6.X5001-6.

  56. Smith, S. E., Smith, F. A., & Jakobsen, I. (2004). Functional diversity in arbuscular mycorrhizal (AM) symbioses: The contribution of the mycorrhizal P uptake pathway is not correlated with mycorrhizal responses in growth or total P uptake. New Phytologist, 162(2), 511–524. https://doi.org/10.1111/j.1469-8137.2004.01039.x.

  57. Stein, E., Molitor, A., Kogel, K.-H., & Waller, F. (2008). Systemic resistance in Arabidopsis conferred by the mycorrhizal fungus Piriformospora indica requires Jasmonic acid signaling and the cytoplasmic function of NPR1. Plant and Cell Physiology, 49(11), 1747–1751. https://doi.org/10.1093/pcp/pcn147.

  58. Su, Z., Wang, T., Shrivastava, N., Chen, Y. Y., Liu, X., Sun, C., Yin, Y., Gao, Q., & Lou, B. (2017). Piriformospora indica promotes growth, seed yield and quality of Brassica napus L. Microbiological Research, 199, 29–39. https://doi.org/10.1016/j.micres.2017.02.006.

  59. Sun, C., Johnson, J. M., Cai, D., Sherameti, I., Oelmüller, R., & Lou, B. (2010). Piriformospora indica confers drought tolerance in Chinese cabbage leaves by stimulating antioxidant enzymes, the expression of drought-related genes and the plastid-localized CAS protein. Journal of Plant Physiology, 167, 1009–1017. https://doi.org/10.1016/j.jplph.2010.02.013.

  60. Sun, C., Shao, Y., Vahabi, K., Lu, J., Bhattacharya, S., Dong, S., Yeh, K., Sherameti, I., Lou, B., Baldwin, I., & Oelmüller, R. (2014a). The beneficial fungus Piriformospora indica protects Arabidopsis from Verticillium dahlia infection by downregulation plant defense responses. BMC Plant Biology, 14(1), 268. https://doi.org/10.1186/s12870-014-0268-5.

  61. Sun, C., Shao, Y., & Vahabi, K. (2014b). Piriformospora indica is an efficient biocontrol agent against Verticillium dahliae wilt: Role of phytohormone signaling in the three partite interaction. Journal of Endocytobiosis and Cell Research, 25, 9–19.

  62. Thangavelu, R., & Mustaff, M. M. (2012). Current advances in the fusarium wilt disease management in banana with emphasis on biological control. In Plant Pathology (pp. 273–298). InTech. https://doi.org/10.13140/2.1.1941.0723.

  63. Varma, A., Verma, S., Sudha, Sahay, N., Bütehorn, B., & Franken, P. (1999). Piriformospora indica, a cultivable plant-growth-promoting root endophyte. Applied and Environmental Microbiology, 65(6), 2741–2744.

  64. Varma, A., Bakshi, M., Lou, B., Hartmann, A., & Oelmueller, R. (2012). Piriformospora indica: A novel plant growth-promoting mycorrhizal fungus. Agricultural Research, 1(2), 117–131. https://doi.org/10.1007/s40003-012-0019-5.

  65. Varma, A., Chordia, P., Bakshi, M., & Oelmüller, R. (2013). Introduction to Sebacinales. In Piriformospora indica. Soil Biology (pp. 3–24). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33802-1_1.

  66. Vos, C. M., Tesfahun, A. N., Panis, B., De Waele, D., & Elsen, A. (2012). Arbuscular mycorrhizal fungi induce systemic resistance in tomato against the sedentary nematode Meloidogyne incognita and the migratory nematode Pratylenchus penetrans. Applied Soil Ecology, 61(5), 1–6. https://doi.org/10.1016/j.apsoil.2012.04.007.

  67. Waller, F., Achatz, B., Baltruschat, H., Fodor, J., Becker, K., Fischer, M., Heier, T., Hückelhoven, R., Neumann, C., Wettstein, D. V., Franken, P., & Kogel, K. H. (2005). The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proceedings of the National Academy of Sciences, 102(38), 13386–13391. https://doi.org/10.1073/pnas.0504423102.

  68. Waller, F., Mukherjee, K., Deshmukh, S. D., Achatz, B., Sharma, M., Schäfer, P., & Kogel, K.-H. (2008). Systemic and local modulation of plant responses by Piriformospora indica and related Sebacinales species. Journal of Plant Physiology, 165(1), 60–70. https://doi.org/10.1016/j.jplph.2007.05.017.

  69. Wang, B., Yuan, J., Zhang, J., Shen, Z., Zhang, M., Li, R., Ruan, Y., & Shen, Q. (2013). Effects of novel bioorganic fertilizer produced by Bacillus amyloliquefaciens W19 on antagonism of Fusarium wilt of banana. Biology and Fertility of Soils, 49(4), 435–446. https://doi.org/10.1007/s00374-012-0739-5.

  70. Wang, W., Shi, J., Xie, Q., Jiang, Y., Yu, N., & Wang, E. (2017). Nutrient exchange and regulation in arbuscular mycorrhizal symbiosis. Molecular Plant, 10(9), 1147–1158. https://doi.org/10.1016/j.molp.2017.07.012.

  71. Whipps, J. M. (2004). Prospects and limitations for mycorrhizas in biocontrol of root pathogens. Canadian Journal of Botany, 82(8), 1198–1227. https://doi.org/10.1139/b04-082.

  72. Xu, L., Zhu, L., Tu, L., Liu, L., Yuan, D., Jin, L., Long, L., & Zhang, X. (2011). Lignin metabolism has a central role in the resistance of cotton to the wilt fungus Verticillium dahliae as revealed by RNA-Seq-dependent transcriptional analysis and histochemistry. Journal of Experimental Botany, 62(15), 5607–5621. https://doi.org/10.1093/jxb/err245.

  73. Xu, L., Wang, A., Wang, J., Wei, Q., & Zhang, W. (2017). Piriformospora indica confers drought tolerance on Zea mays L. through enhancement of antioxidant activity and expression of drought-related genes. The Crop Journal, 5(3), 251–258. https://doi.org/10.1016/j.cj.2016.10.002.

  74. Zamani, J., Hajabbasi, M. A., Mosaddeghi, M. R., Soleimani, M., Shirvani, M., & Schulin, R. (2018). Experimentation on degradation of petroleum in contaminated soils in the root zone of maize (Zea Mays L.) inoculated with Piriformospora indica. Soil and Sediment Contamination, 27(1), 1–18. https://doi.org/10.1080/15320383.2018.1422693.

  75. Zhang, N., Wu, K., He, X., Li, S., Zhang, Z., Shen, B., Yang, X. M., Zhang, R. F., Huang, Q. W., & Shen, Q. R. (2011). A new bioorganic fertilizer can effectively control banana wilt by strong colonization with Bacillus subtilis N11. Plant and Soil, 344(1–2), 87–97. https://doi.org/10.1007/s11104-011-0729-7.

  76. Zohreh, N., & Parissa, T. (2017). Endophytic fungus Piriformospora indica induced systemic resistance against rice sheath blight via affecting hydrogen peroxide and antioxidants. Biocontrol Science and Technology, 27(2), 252–267. https://doi.org/10.1080/09583157.2016.1277690.

  77. Zuo, C. W., Li, B., Li, C. Y., Wei, Y. R., Hu, C. H., Deng, G. M., Kuang, R. B., Yang, Q. S., & Yi, G. J. (2016). Establishment of resistance evaluation system of banana to Fusarium oxysporum f. sp. cubense tropical race 4. Acta Horticulturae Sinica, 43(5), 876–884. (in Chinese). https://doi.org/10.16420/j.issn.0513-353x.2015-0781.

Download references

Acknowledgements

This work was funded by the Natural Science Funds for Distinguished Young Scholar of the Fujian Agriculture and Forestry University (xjq201721), the Educational and Scientific Research Program for Young and Middle-aged Instructor of Fujian province (JAT160166), the earmarked Fund for China Agriculture Research System (CARS-31-15), the Natural Science Foundation of China (31601713), and the Construction of Plateau Discipline of Fujian Province (102/71201801101). We thank professor Kai-Wun Yeh of Taiwan University for his kind giving of the Serendipita indica strain.

Author information

Correspondence to Zhongxiong Lai.

Ethics declarations

Conflict of interest

The authors declare that they have no potential conflict of interest, and this research did not involve human participants and/or animals.

Electronic supplementary material

ESM 1

(TIF 347 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cheng, C., Li, D., Qi, Q. et al. The root endophytic fungus Serendipita indica improves resistance of Banana to Fusarium oxysporum f. sp. cubense tropical race 4. Eur J Plant Pathol 156, 87–100 (2020). https://doi.org/10.1007/s10658-019-01863-3

Download citation

Keywords

  • Serendipita indica
  • Banana
  • Banana wilt
  • Antioxidant enzyme
  • Disease resistance