Advertisement

European Journal of Plant Pathology

, Volume 155, Issue 4, pp 1277–1286 | Cite as

Effect of temperature on severity of Fusarium wilt of cabbage caused by Fusarium oxysporum f. sp. conglutinans

  • Tomáš JelínekEmail author
  • Martin Koudela
  • Věra Kofránková
  • Jaroslav Salava
Article
  • 63 Downloads

Abstract

The effect of temperature on severity of Fusarium wilt of cabbage caused by pathogen Fusarium oxysporum f. sp. conglutinans was assessed. The pathogen was first tested in vitro for growth under different temperatures of 15, 18, 24, 28 and 37 °C. Based on the results, several temperature variants were selected to test the effect of temperature on the infection of plants grown in substrate. Two susceptible and one resistant variety were chosen for the testing. Cabbage plants were cultivated at temperatures of 16/18 °C, 19/21 °C, 22/24 °C and 26/28 °C. Susceptible varieties showed more severe symptoms and greater plant die-off at higher temperatures (22/24 °C and 26/28 °C), compared to lower temperatures (16/18 °C and 19/21 °C). For the resistant variety, the highest incidence of wilt symptoms was observed at 26/28 °C, while the degree of infection was the same as in susceptible plants at lower temperatures. PCR analysis demonstrated that plants grown at lower temperatures with minimum symptoms were also infected with the pathogen. The study suggested losses due to Fusarium wilt could be reduced by cultivating cabbages during colder periods.

Keywords

Brassica oleraceae convar. capitata f. alba Variety Resistance In vitro Visual symptoms PCR 

Notes

Acknowledgements

This work was supported by the Ministry of Agriculture of the Czech Republic within the project NAZV QJ1510088.

Compliance with ethical standards

This study did not involve any human participants and/or animals.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Angadi, S. V., Cutforth, H. W., Miller, P. R., McConkey, B. G., Entz, M. H., Brandt, S. A., & Volkmar, K. M. (2000). Response of three Brassica species to high temperature stress during reproductive growth. Canadian Journal of Plant Science, 80(4), 693–701.CrossRefGoogle Scholar
  2. Balasu, A. G., Cristea, S., Zala, C. R., & Oprea, M. (2015). The biological growth parameters of the Fusarium oxysporum f. sp. glycines fungus. Romanian Biotechnological Letters, 20(6), 10 921–10 928.Google Scholar
  3. Cha, S.-D., Jeon, Y.-J., Ahn, G.-R., Han, J. I., Han, K.-H., & Kim, S. H. (2007). Characterization of Fusarium oxysporum isolated from Paprika in Korea. Mycobiology, 35(2), 91–96.CrossRefGoogle Scholar
  4. Di Pietro, A., Madrid, M. P., Caracuel, Z., Delgado-Jarana, J., & Roncero, M. I. G. (2003). Fusarium oxysporum: exploring the molecular arsenal of a vascular wilt fungus. Molecular Plant Pathology, 4(5), 315–325.CrossRefGoogle Scholar
  5. Dzhalilov, F. S., & Ha, V. T. N. (2014). Cabbage diseases control in field. Potato and Vegetables, 54, 20–23.Google Scholar
  6. Epstein, L., Kaur, S., Chang, P. L., Carrasquilla-Garcia, N., Lyu, G., Cook, D. R., Subbarao, K. V., & O’Donnell, K. (2017). Races of the celery pathogen Fusarium oxysporum f. sp. apii are polyphyletic. Phytopathology, 107, 463–473.CrossRefGoogle Scholar
  7. Farooq, S., Iqbal, S. M., & Rauf, C. A. (2005). Physiological studies of Fusarium oxysporum f. sp. ciceri. International Journal of Agriculture & Biology, 7(2), 275–277.Google Scholar
  8. Fayzalla, E. A., Shabana, Y. M., & Mahmoud, N. S. (2008). Effect of environmental conditions on wilting and root rot fungi pathogenic to solanaceous plants. Plant Pathology Journal, 7(1), 27–33.CrossRefGoogle Scholar
  9. Flood, J. (2006). A review of Fusarium wilt of oil palm caused by Fusarium oxysporum f. sp. elaeidis. Phytopathology, 96, 660–662.CrossRefGoogle Scholar
  10. Fovo, J. D., Dostaler, D., & Bernier, L. (2017). Influence of culture media and temperature on growth and sporulation of Lasiodiplodia theobromae, Pestalotiopsis microspora and Fusarium oxysporum isolated from Ricinodendron heudelotii in Cameroon. International Journal of Current Microbiology and Applied Sciences, 6(6), 3098–3112.CrossRefGoogle Scholar
  11. Fravel, D. R., Stosz, S. K., & Larkin, R. P. (1996). Effect of temperature, soil type, and matric potential on proliferation and survival of Fusarium oxysporum f. sp. erythroxyli from Erythroxylum coca. Phytopathology, 86, 236–240.CrossRefGoogle Scholar
  12. Gaetán, S. A. (2005). Occurrence of Fusarium wilt on canola caused by Fusarium oxysporum f. sp. conglutinans in Argentina. Plant Disease, 89, 432.CrossRefGoogle Scholar
  13. Garibaldi, A., Gilardi, G., & Gullino, M. L. (2006). Evidence for an expanded host range of Fusarium oxysporum f. sp. raphani. Phytoparasitica, 34(2), 115–121.CrossRefGoogle Scholar
  14. Gupta, V. K., Misra, A. K., & Gaur, R. K. (2010). Growth characteristics of Fusarium spp. causing wilt disease in Psidium guajava L. in India. Journal of Plant Protection Research, 50(4), 452–462.CrossRefGoogle Scholar
  15. Hibar, K., Daami-Remadi, M., Jabnoun-Khiareddine, H., & El Mahjoub, M. (2006). Temperature effect on mycelial growth and on disease incidence of Fusarium oxysporum f.sp. radicis-lycopersici. Plant Pathology Journal, 5(2), 233–238.CrossRefGoogle Scholar
  16. Jiménez-Díaz, R. M., Castillo, P., Jiménez-Gasco, M. M., Landa, B. B., & Navas-Cortés, J. A. (2015). Fusarium wilt of chickpeas: Biology, ecology and management. Crop Protection, 73, 16–27.CrossRefGoogle Scholar
  17. Kendrick, J. B. (1930). Kale yellows in California, caused by Fusarium conglutinans Wollenw. Hilgardia, 5(1), 1–15.CrossRefGoogle Scholar
  18. Kochman, J. (2007). Fusarium oxysporum f. sp. Conglutinans. Fusarium wilt of canola. Plant Health Australia. http://www.planthealthaustralia.com.au/pests/fusarium-wilt-of-canola/. Accessed 5 December 2018.
  19. Koike, S. T., Gladders, P., & Paulus, A. O. (2007). Vegetables diseases. London: Manson Publishing Ltd..Google Scholar
  20. Landa, B. B., Navas-Cortés, J. A., Hervás, A., & Jiménez-Díaz, R. M. (2001). Influence of temperature and inoculum density of Fusarium oxysporum f. sp. ciceris on suppression of Fusarium wilt of chickpea by rhizosphere bacteria. Phytopathology, 91(8), 807–816.CrossRefGoogle Scholar
  21. Landa, B. B., Navas-Cortés, J. A., Jiménez-Gasco, M. M., Katan, J., Retig, B., & Jiménez-Diáz, R. M. (2006). Temperature response of chickpea cultivars to races of Fusarium oxysporum f. sp. ciceris, causal agent of Fusarium wilt. Plant Disease, 90, 365–374.CrossRefGoogle Scholar
  22. Lange, R. M., Gossmann, M., & Büttner, C. (2007). Yield loss in susceptible cultivars of spring rapeseed due to Fusarium wilt caused by Fusarium oxysporum. Communications in Agricultural and Applied Biological Sciences, 72(4), 723–734.PubMedGoogle Scholar
  23. Larkin, R. P., & Fravel, D. R. (2002). Effects of varying environmental conditions on biological control of Fusarium wilt of tomato by nonpathogenic Fusarium spp. Phytopathology, 92, 1160–1166.CrossRefGoogle Scholar
  24. Liu, X., Ling, J., Xiao, Z., Xie, B., Fang, Z., Yang, L., Zhang, Y., Lv, H., & Yang, Y. (2017). Characterization of emerging populations of Fusarium oxysporum f. sp. conglutinans causing cabbage wilt in China. Journal of Phytopathology, 165(11–12), 813–821.CrossRefGoogle Scholar
  25. Luhová, L., Lebeda, A., Kutrová, E., Hedererová, D., & Peč, P. (2006). Peroxidase, catalase, amine oxidase and acid phosphatase activities in Pisum sativum during infection with Fusarium oxysporum and F. solani. Biologia Plantarum, 50(4), 675–682.CrossRefGoogle Scholar
  26. Mogensen, J. M., Nielsen, K. F., Samson, R. A., Frisvad, J. C., & Thrane, U. (2009). Effect of temperature and water activity on the production of fumonisins by Aspergillus niger and different Fusarium species. BMC Microbiology, 9, 281.CrossRefGoogle Scholar
  27. Mohsen, L. Y., Al-Janabi, J. K. A., & Jebor, M. A. (2016). The effect of some environmental conditions on the growth and activity of the external enzymes for five sp. of Fusarium. Journal of Babylon University. Pure and Applied Sciences, 24, 630–646.Google Scholar
  28. Morrison, M. J., McVetty, P. B. E., & Shaykewich, C. F. (1989). The determination and verification of a baseline temperature for the growth of Westar summer rape. Canadian Journal of Plant Science, 69(2), 455–464.CrossRefGoogle Scholar
  29. Navas-Cortés, J. A., Landa, B. B., Méndez-Rodríguez, M. A., & Jiménez-Díaz, R. M. (2007). Quantitative modeling of the effects of temperature and inoculum density of Fusarium oxysporum f. sp. ciceris races 0 and 5 on development of Fusarium wilt in chickpea cultivars. Phytopathology, 97, 564–573.CrossRefGoogle Scholar
  30. Ramamoorthy, V., Raguchander, T., & Samiyappan, R. (2002). Induction of defense-related proteins in tomato roots treated with Pseudomonas fluorescens Pf1 and Fusarium oxysporum f. sp. lycopersici. Plant and Soil, 239(1), 55–68.CrossRefGoogle Scholar
  31. Rosa, E. A. S., & Rodrigues, P. M. F. (1998). The effect of light and temperature on glucosinolate concentration in the leaves and roots of cabbage seedlings. Journal of the Science of Food and Agriculture, 78(2), 208–212.CrossRefGoogle Scholar
  32. Scott, J. C., Gordon, T. R., Shaw, D. V., & Koike, S. T. (2010). Effect of temperature on severity of Fusarium wilt of lettuce caused by Fusarium oxysporum f. sp. lactucae. Plant Disease, 94, 13–17.CrossRefGoogle Scholar
  33. Shabani, F., Kumar, L., & Esmaeili, A. (2014). Future distributions of Fusarium oxysporum f. spp. in European, Middle Eastern and North African agricultural regions under climate change. Agriculture, Ecosystems & Environment, 197, 96–105.CrossRefGoogle Scholar
  34. Somu, R., & Thammaiah, N. (2015). Physiological studies of Fusarium oxysporum f. sp. cubense causing panama wilt in banana. The Bioscan, 10(4), 1721–1724.Google Scholar
  35. Webb, K. M., Brenner, T., & Jacobsen, B. J. (2015). Temperature effects on the interactions of sugar beet with Fusarium yellows caused by Fusarium oxysporum f. sp. betae. Canadian Journal of Plant Pathology, 37(3), 353–362.CrossRefGoogle Scholar
  36. Wszelaki, A., & Kleinhenz, M. D. (2003). Yield and relationships among head traits in cabbage as influenced by planting date and cultivar. II. Processing. HortScience, 38(7), 1355–1359.CrossRefGoogle Scholar
  37. Yaniv, Z., Schafferman, D., & Zur, M. (1995). The effect of temperature on oil quality and yield parameters of high- and low-erucic acid Cruciferae seeds (rape and mustard). Industrial Crops and Products, 3(4), 247–251.CrossRefGoogle Scholar
  38. Zhang, J., Ling, J., Xie, B., & Yang, Y. (2014). Rapid detection and identification of Fusarium oxysporum f. sp. conglutinans race 1 and race 2. Acta Phytopathologica Sinica, 44(6), 586–594.Google Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2019

Authors and Affiliations

  • Tomáš Jelínek
    • 1
    Email author
  • Martin Koudela
    • 1
  • Věra Kofránková
    • 1
  • Jaroslav Salava
    • 2
  1. 1.Department of HorticultureCzech University of Life Sciences PraguePragueCzech Republic
  2. 2.Crop Research InstitutePragueCzech Republic

Personalised recommendations