Advertisement

European Journal of Plant Pathology

, Volume 155, Issue 4, pp 1241–1263 | Cite as

Differential proteomics analysis reveals that Azospirillium brasilense (Sp7) promotes virus tolerance in maize and tomato seedlings

  • Sarah Boyd LadeEmail author
  • Carla Román
  • Ana Isabel del Cueto-Ginzo
  • Luis Serrano
  • Ester Sin
  • María Angeles Achón
  • Vicente Medina
Article
  • 52 Downloads

Abstract

Plant growth-promoting rhizobacteria such as Azospirillum brasilense Sp7 can protect plants against viruses but the molecular basis of this phenomenon is unclear. We therefore used differential proteomics to study two pathosystems in the presence and absence of Sp7 during early vegetative growth: tomato (Solanum lycopersicum L. cv. Boludo)/Potato virus X (PVX, KJ631111)/Sp7, and maize (Zea mays cv. B73)/Maize dwarf mosaic virus (MDMV, AM110558)/Sp7). In the maize/MDMV system, PDQuest revealed significant variations in the levels of 19 proteins compared to uninfected controls, including the upregulation of NADP-dependent malic enzyme as a form of host-specific viral anticipation, causing a simultaneous increase in the abundance of proteins related to photosynthesis and plastid functions. However, 42 proteins varied significantly in the maize/MDMV/Sp7 system, including the upregulation of radical-scavenging enzymes and proteins related to methionine metabolism, the glutathione-ascorbate cycle and photosynthesis, increasing the photosynthetic rate. In the tomato/PVX system, we observed significant variations in the levels of 58 proteins reflecting the disruption of the Calvin-Benson cycle, responses to oxidative stress and the inhibition of photosystem II (PSII) activity. We identified 26 proteins that varied in the tomato/PVX/Sp7 system; PSII and plastid proteins transiently declined but partially recovered over time as the Calvin-Benson cycle was induced to compensate. Sp7 therefore triggers induced systemic resistance in both pathosystems without affecting the virus titer, although it does delay the appearance of MDMV. The role of ribulose-1.5-bisphosphate carboxylase/oxygenase small subunit as a host target for viruses is discussed in both pathosystems.

Keywords

Plant growth-promoting rhizobacteria (PGPR) Sp7 2D-PAGE MALDI-TOF/TOF Maize dwarf mosaic virus (MDMV) Potato virus X (PVX) 

Notes

Acknowledgements

We thank the MINCyT (Spain) for supporting this research with project refs. AGL2010-15691 and PGC2018-097655-B-I00. SL was supported by the UdL-Jade Plus Grant for pre-doctoral researchers and AIC by the UdL-IMPULS program. The authors would like to especially thank Dr. Isabel Sanchez for helping with the proteomic analysis.

Compliance with ethical standards

The paper has not been submitted elsewhere for publication, in whole or in part.

Conflict of interest

The authors declare that they have no conflict of interest regarding the publication of this paper.

Human and animal studies

The research did not involve any human participants and/or animals.

Informed consent

Informed consent was obtained from all individual participants included in the study.

References

  1. Adams, M. J., Accotto, G. P., Agranovsky, A. A., Bar-Joseph, M., Boscia, D., Brunt, A. A., Candresse, T., Coutts, R. H. A., Dolja, V. V., Falk, B. W., Foster, G. D., & Gonsalves, D. (2005). Family Flexiviridae. In C. M. Fauquet, M. A. Mayo, J. Maniloff, U. Desselberger, & L. A. Ball (Eds.), Virus Taxonomy. 8th Report of the International Committee on Taxonomy of Viruses (pp. 1089–1124). San Diego, USA: Elsevier/Academic Press.Google Scholar
  2. Aguilar, E., Almendral, D., Allende, L., Pacheco, R., Chung, B. M., Canto, T., & Tenllado, F. (2015). The P25 protein of Potato Virus X (PVX) is the Main pathogenicity determinant responsible for systemic necrosis in PVX-associated synergisms. Journal of Virology, 89(4), 2090–2103.PubMedGoogle Scholar
  3. Al-Ani, R. A., Adhab, M. A., El-Muadhidi, M. A., & Al-Fahad, M. A. (2011). Induced systemic and promotion of wheat and barley plants growth by biotic and non-biotic agents against barley yellow dwarf virus. African Journal of Biotechnology, 10(56), 12079–12084.Google Scholar
  4. Al-Ani, R. A., Adhab, M. A., & Matny, O. N. (2013). Management of potato virus Y (PVY) in potato by some biocontrol agents under field conditions. Advances in Environmental Biology, 7(3), 441–444.Google Scholar
  5. Asada, K. (2006). Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiology, 141, 391–396.PubMedPubMedCentralGoogle Scholar
  6. Balogun, O. S., Xu, L., Teraoka, T., & Hosokawa, D. (2002). Effects of single and double infections with potato virus X and Tobacco mosaic virus on disease development, plant growth, and virus accumulation in tomato. Fitopatologia Brasileira, 27, 241–248.Google Scholar
  7. Bashan, Y., & de Bashan, L. E. (2002). Protection of tomato seedlings against infection by Pseudomonas syringae pv tomato using the plant growth promoting bacterium Azospirillum brasilense. Applied and Environmental Microbiology, 68, 2637–2643.PubMedPubMedCentralGoogle Scholar
  8. Bashan, Y., Holguin, G., & Lifshitz, R. (1993). Isolation and characterization of plant growth promoting rhizobacteria. In B. R. Glick (Ed.), Methods in plant molecular biology and biotechnology (pp. 331–345). Boca Raton: CRC Press.Google Scholar
  9. Botta, L. A., Santacecilia, A., Ercole, C., Cacchio, P., & del Gallo, M. (2013). In vitro and in vivo inoculation of four endophytic bacteria on Lycopersicon esculentum. Nature Biotechnology, 30(6), 666–674.Google Scholar
  10. Brizard, J. P., Carapito, C., Delalande, F., Van Dorsselaer, A., & Brugidou, C. (2006). Proteome analysis of plant-virus interactome: Comprehensive data for virus multiplication inside their hosts. Molecular and Cellular Proteomics, 5, 2279–2297.PubMedGoogle Scholar
  11. Cai, J., Zeng, Z., Connor, J. N., Huang, C. Y., Melino, V., Kumar, P., & Miklavcic, S. J. (2015). Rootgraph: A graphic optimization tool for automated image analysis of plant roots. Journal of Experimental Botany, 66(21), 6551–6562.PubMedPubMedCentralGoogle Scholar
  12. Clark, M. F., & Bar-Joseph, M. (1984). Enzyme immunosorbent assay in plant virology. In K. Maramorosch & H. Koprowski (Eds.), Methods in virology (Vol. 7, pp. 51–58). New York: Academic Press.Google Scholar
  13. Cueto-Ginzo, A. I., Serrano, L., Sin, E., Rodríguez, R., Morales, J. G., Lade, S. B., Medina, V., & Achon, M. A. (2016a). Exogenous salicylic acid treatment delays initial infection and counteracts alterations induced by Maize dwarf mosaic virus in the maize proteome. Physiological and Molecular Plant Pathology, 96, 46–59.Google Scholar
  14. Cueto-Ginzo, A. I., Serrano, L., Bostock, R. M., Ferrio, J. P., Rodríguez, R., Arcal, L., Achón, M. A., Falcioni, T., Luzuriaga, W. P., & Medina, V. (2016b). Salicylic acid mitigates physiological and proteomic changes induced by the SPCP1 strain of Potato virus X in tomato plants. Physiological and Molecular Plant Pathology, 93, 1–11.Google Scholar
  15. Dashti, N. H., Montasser, M. S., Ali, N. Y., Bhardwaj, R. G., & Smith, D. L. (2007). Nitrogen biofixing bacteria compensate for the yield loss caused by viral satellite RNA associated with cucumber mosaic virus in tomato. The Plant Pathology Journal, 23(2), 90–96.Google Scholar
  16. Doubnerová, V., Müller, K., Čeřovská, N., Synková, H., Spoustová, P., & Ryšlavá, H. (2009). Effect of Potato Virus Y on the NADP-malic enzyme from Nicotiana tabacum L.: mRNA, expressed protein and activity. International Journal of Molecular Sciences, 10, 3583–3598.PubMedPubMedCentralGoogle Scholar
  17. Falcioni, T., Ferrio, J. P., Cueto, A. I., Giné, J., Achón, M. A., & Medina, V. (2014). Effect of salicylic acid treatment on tomato plant physiology and to Potato virus X infection. European Journal of Plant Pathology, 138, 331e345.Google Scholar
  18. García-Marcos, A., Pacheco, R., Martiáñez, J., González-Jara, P., Díaz-Ruíz, J. R., & Tenllado, F. (2009). Transcriptional changes and oxidative stress associated with the synergistic interaction between Potato virus X and Potato virus Y and their relationship with symptom expression. Molecular Plant-Microbe Interactions, 22, 1431–1444.PubMedGoogle Scholar
  19. Havelda, Z., & Maule, A. J. (2000). Complex spatial responses to cucumber mosaic virus infection in susceptible Cucurbita pepo cotyledons. The Plant Cell, 12, 1975–1985.PubMedPubMedCentralGoogle Scholar
  20. Hooks, C. R. R., Wright, M. G., Kabasaw, D. S., Manandhar, R., & Almeida, R. P. P. (2008). Effect of banana bunchy top virus infection on morphology and growth characteristics of banana. Annals of Applied Biology, 153(1), 1–9.Google Scholar
  21. Huang, T. S., & Nagy, P. D. (2011). Direct inhibition of tombusvirus plus-strand RNA synthesis by a dominant negative mutant of a host metabolic enzyme, glyceraldehyde-3-phosphate dehydrogenase, in yeast and plants. Journal of Virology, 85, 9090–9102.PubMedPubMedCentralGoogle Scholar
  22. Huang, J., Taylor, J. P., Chen, J. G., Uhrig, J. F., Schnell, D. J., Nakagawa, T., Korth, K. L., & Jones, A. M. (2006). The plastid protein THYLAKOID FORMATION1 and the plasma membrane G-protein GPA1 interact in a novel sugar-signaling mechanism in Arabidopsis. Plant Cell, 18, 1226–1238.PubMedPubMedCentralGoogle Scholar
  23. Huang, W., Chen, Q., Zhu, Y., Hu, F., Zhang, L., Ma, Z., He, Z., & Huang, J. (2013). Arabidopsis thylakoid formation 1 is a critical regulator for dynamics of PSII–LHCII complexes in leaf senescence and excess light. Molecular Plant, 6(5), 1673–1691.PubMedGoogle Scholar
  24. Hussein, M., & Kamberoglu, M. A. (2017). The response to Potato virus X infection of tomato plants treated with ISR2000. European Journal of Plant Pathology, 149(4), 807–815.Google Scholar
  25. Ishiga, Y., Ishiga, T., Wangdi, T., Mysore, K. S., & Uppalapati, S. R. (2012). NTRC and chloroplast-generated reactive oxygen species regulate Pseudomonas syringae pv. Tomato disease development in tomato and Arabadopsis. Molecular Plant-Microbe Interactions, 25(3), 294–306.PubMedGoogle Scholar
  26. Ishikawa, T., & Shigeoka, S. (2008). Recent advances in ascorbate biosynthesis and the physiological significance of ascorbate peroxidase in photosynthesizing organisms. Bioscience, Biotechnology, and Biochemistry, 72, 1143–1154.PubMedGoogle Scholar
  27. Izumi, M., Tsunoda, H., Suzuki, Y., Makino, A., & Ishida, H. (2012). RBCS1A and RBCS3B, two major members within the Arabadopsis RBCS multigene family, function to yield sufficient Rubisco content for leaf photosynthetic capacity. Journal of Experimental Botany, 63(5), 2159–2170.Google Scholar
  28. Jin, S., Kanagaraj, A., Verma, D., Lange, T., & Daniell, H. (2011). Release of hormones from conjugates: chloroplast expression of β-glucosidase results in elevated phytohormone levels associated with significant increase in biomass and protection from aphids or whiteflies conferred by sucrose esters. Plant Physiology, 155(1):222–235.Google Scholar
  29. Jorrín-Novo, J. V., Maldonado, A. M., Echevarría-Zomeño, S., Valledor, L., Castillejo, M. A., Curto, M., Valero, J., Sghaier, B., Donoso, G., & Redondo, I. (2009). Plant proteomics update (2007-2008): Second-generation proteomic techniques, an appropriate experimental design, and data analysis to fulfill MIAPE standards, increase plant proteome coverage and expand biological knowledge. Journal of Proteomics, 72, 285–314.PubMedGoogle Scholar
  30. Kaido, M., Abe, K., Mine, A., Hyodo, K., Taniguchi, T., Taniguchi, H., Mise, K., & Okuno, T. (2014). Gapdh-a recruits a plant virus movement protein to cortical virus replication complexes to facilitate viral cell-to-cell movement. PloS Pathology, 10, e1004505.Google Scholar
  31. Kannan, M., Ismail, I., & Bunawan, H. (2018). Maize dwarf mosaic virus: From genome to disease management. Viruses, 10(9), 492.PubMedCentralGoogle Scholar
  32. Keren, N., Ohkawa, H., Welsh, E. A., Liberton, M., & Pakrasi, H. B. (2005). Psb29, a conserved 22-kD protein, functions in the biogenesis of photosystem II complexes in Synechocystis and Arabidopsis. Plant Cell, 17, 2768–2781.PubMedPubMedCentralGoogle Scholar
  33. Kwon, Y. S., Ryu, C.-M., Lee, S., Park, H. B., Han, K. S., Lee, J. H., Lee, K., Chung, W. S., Jeong, M. J., Kim, H. K., & Bae, D. W. (2010). Proteome analysis of Arabidopsis seedlings exposed to bacterial volatiles. Planta, 1370, 1355–1370.Google Scholar
  34. Lade, S. B., Román, C., Cueto-Ginzo, A. I., Serrano, L., Sin, E., Achón, M. A., & Medina, V. (2018). Host-specific proteomic and growth analysis of maize and tomato seedlings inoculated with Azospirillum brasilense Sp7. Plant Physiology and Biochemistry, 129, 381–393.PubMedGoogle Scholar
  35. Lancashire, P. D., Bleiholder, H., Langelüddecke, P., & Stauss, R. (1991). An uniform decimal code for growth stages of crops and weeds. Annals of Applied Biology, 119, 561–601.Google Scholar
  36. Leister, D. (2014). Complex(iti)es of the ubiquitous RNA-binding CSP41 proteins. Frontiers in Plant Science, 5(255), 1–4.Google Scholar
  37. Lepistö, A., Pakula, E., Toivola, J., Krieger-Liszkay, A., Vignols, F., & Rintamäki, E. (2013). Deletion of chloroplast NADPH-dependent thioredoxin reductase results in inability to regulate starch synthesis and causes stunted growth under short-day photoperiods. Journal of Experimental Botany, 64, 3843–3854.PubMedPubMedCentralGoogle Scholar
  38. Lin, L., Luo, Z., Yan, F., Lu, Y., Zheng, H., & Chen, J. (2011). Interaction between potyvirus P3 and ribulose-1,5 bisphosphatecarboxylase/ oxygenase (RubisCO) of host plants. Virus Genes, 43, 90–92.PubMedGoogle Scholar
  39. Lindsey, D. W., & Gudauskas, R. T. (1975). Effects of maize dwarf mosaic virus on water relations of corn. Phytopathology, 65(4), 434–440.Google Scholar
  40. Matthews, R. (1982). The classification and nomenclature of viruses: Summary of results of meetings of the international committee on taxonomy of viruses in Strasbourg. Intervirology, 16, 53–60.Google Scholar
  41. Maule, A.J. (2001). Virus and Host Plant Interactions. In J. Wiley & Sons (Eds), Encyclopedia of Life Sciences, (pp. 1–7). Norwich, UK: John Innes Centre. Google Scholar
  42. Morita, K., Hatanaka, T., Misoo, S., & Fukayama, H. (2014). Unusual small subunit that is not expressed in photosynthetic cells alters the catalytic properties of Rubisco in rice. Plant Physiology, 164, 69–79.PubMedGoogle Scholar
  43. Muhlenbock, P., Szechynska-Hebda, M., Plaszczyca, M., Baudo, M., Mateo, A., Mullineaux, P. M., Parker, J. E., Karpinksa, B., & Karpinski, S. (2008). Chloroplast signaling and LESION SIMULATING DISEASE1 regulate crosstalk between light acclimation and immunity in Arabidopsis. Plant Cell, 20, 2339–2356.PubMedPubMedCentralGoogle Scholar
  44. Ojeda, V., Pérez-Ruiz, J. M., González, M., Nájera, V. A., Sahrawy, M., Serrato, A. J., Geigenberger, P., & Cejudo, F. J. (2017). NADPH thioredoxin reductase C and thioredoxins act concertedly in seedling development. Plant Physiology, 174, 1436–1448.PubMedPubMedCentralGoogle Scholar
  45. Okon, Y., Albrecht, S. L., & Burris, R. H. (1977). Methods for growing Spirillum lipoferum and for counting it in pure culture and in association with plants. Applied and Environmental Microbiology, 33, 85–88.PubMedPubMedCentralGoogle Scholar
  46. Passardi, F., Tognolli, M., De Meyer, M., Penel, C., & Dunand, C. (2006). Two cell wall associated peroxidases from Arabidopsis influence root elongation. Planta, 223(5), 965–974.PubMedGoogle Scholar
  47. Prasanth, K. R., Huang, Y. W., Liou, M. R., Wang, R. Y., Hu, C. C., Tsai, C. H., Meng, M., Lin, N. S., & Hsu, Y. H. (2011). Glyceraldehyde 3-phosphate dehydrogenase negatively regulates the replication of bamboo mosaic virus and its associated satellite RNA. Journal of Virology, 85, 8829–8840.PubMedPubMedCentralGoogle Scholar
  48. Qiao, Y., Li, H. F., Wong, S. M., & Fan, Z. F. (2009). Plastocyanin transit peptide interacts with potato virus X coat protein, while silencing of plastocyanin reduces coat protein accumulation in chloroplasts and symptom severity in host plants. Molecular Plant-Microbe Interactions, 22, 1523–1534.PubMedGoogle Scholar
  49. Rao, X., & Dixon, R. A. (2016). The differences between NAD-ME and NADP-ME subtypes of C4 photosynthesis: More than decarboxylating enzymes. Frontiers in Plant Science, 7, 1525.PubMedPubMedCentralGoogle Scholar
  50. Romanowska, E., Buczynska, A., Wasilewska, W., Krupnik, T., Drozak, A., Rogowski, P., Parys, E., & Zienkiewicz, M. (2017). Differenences in photosynthetic responses of NADP-ME type C4 species to high light. Planta, 245, 641–657.PubMedGoogle Scholar
  51. Rosa-Téllez, S., Anoman, A. D., Flores-Tornero, M., Toujani, W., Alseek, S., Fernie, A. R., Nebauer, S. G., Muñoz-Bertomeu, J., Segura, J., & Ros, R. (2017). Phosphoglycerate kinases are co-regulated to adjust metabolism and to optimize growth. Plant Physiology, 176(2), 1182–1198.PubMedPubMedCentralGoogle Scholar
  52. Roshanpour, N., Darzi, M. T., & Hadi, M. H. S. (2014). Effects of plant growth promoter bacteria on biomass and yield of basil (Ocimum basilicum L.). International Journal of Advanced Biological and Biomedical Research, 2(6), 2077–2085.Google Scholar
  53. Scholthof, K.-B. G., Adkins, S., Czosnek, H., Palukaitis, P., Jacquot, E., Hohn, T., Hohn, B., Saunders, K., Candresse, T., Ahlquist, P., Hemenway, C., & Foster, G. D. (2011). Top 10 plant viruses in molecular plant pathology. Molecular Plant Pathology, 12, 938–954.PubMedPubMedCentralGoogle Scholar
  54. Strand, L. (2006). Disease. In L. Strand (Ed), Integrated Pest Management for Potatoes in the western United States 2nd edn. (p. 95). Davis, CA: University of California Division of Agriculture and Natural Resources.Google Scholar
  55. Tanaka, S., Sawaya, M. R., Kerfeld, C. A., & Yeates, T. O. (2007). Structure of the Rubisco chaperone RbcX from Synechocystis sp. PCC6803. Acta Cryst, D63, 1109–1112.Google Scholar
  56. The UniProt Consortium. (2017). UniProt: The universal protein knowledgebase. Nucleic Acids Research, 45, D158–D169.Google Scholar
  57. Timm, S., Florian, A., Fernie, A. R., & Bauwe, H. (2016). The regulatory interplay between photorespiration and photosynthesis. Journal of Experimental Botany, 67(10), 2923–2929.PubMedGoogle Scholar
  58. Tortora, M. L., Díaz-Ricci, J. C., & Pedraza, R. O. (2011). Azospirillum brasilense siderophores with antifungal activity against Colletotrichum acutatum. Archives of Microbiology, 193, 275–286.PubMedGoogle Scholar
  59. Tosic, M., & Misovic, M. (1967). A study of the maize mosaic virus occurrence and its effect on the growth and yield of some corn varieties and hybrids. Zaštita Bilja, 93-95, 173–180.Google Scholar
  60. Tu, J. C., & Ford, R. E. (1968). Effect of maize dwarf mosaic virus infection on respiration and photosynthesis of corn. Phytopathology, 58(3), 282–284.Google Scholar
  61. Van Regenmortel, M. H. V., & Mahy, B. W. J. (2004). Emerging issues in virus taxonomy. Emerging Infectious Diseases, 10(1), 8–13.PubMedPubMedCentralGoogle Scholar
  62. Wang, S. D., Zhu, F., Yuan, S., Yang, H., Xu, F., Shang, J., Xu, M. Y., Jia, S. D., Zhang, Z. W., Wang, J. H., Xi, D. H., & Lin, H. H. (2011). The roles of ascorbic acid and glutathione in symptom alleviation to SA-deficient plants infected with RNA viruses. Planta, 234, 171–181.PubMedGoogle Scholar
  63. Wangdi, T., Uppalapati, S. R., Nagaraj, S., Ryu, C.-M., Bender, C. L., & Mysore, K. S. (2010a). A role for chloroplast-localized thylakoid formation 1 (ThF1) in bacterial speck disease development. Plant Signaling & Behavior, 5(4), 425–427.Google Scholar
  64. Wangdi, T., Uppalapati, S. R., Nagaraj, S., Ryu, C.-M., Bender, C. L., & Mysore, K. S. (2010b). A virus-induced gene silencing screen identifies a role for thylakoid Formation1 in Pseudomonas syringae pv. Tomato symptom development in tomato and Arabidopsis. Plant Physiology, 152(28), 1–92.Google Scholar
  65. Xu, Q., Ni, H., Chen, Q., Sun, F., Zhou, T., Lan, Y., & Zhou, Y. (2013). Comparative proteomic analysis reveals the cross-talk between the responses induced by H2O2 and by longterm Rice Black-streaked dwarf virus infection in rice. PLoS One, 8(11), e81640.PubMedPubMedCentralGoogle Scholar
  66. Yildiz, R.C., & Aysan, Y. (2005). Determination on effect of plant activators on tomato seedling infested with pathogen (Clavibacter michiganensis subsp. michiganensis) of bacterial wilt disease. Turkey 2nd seed congress 9–11 November, Adana, 359 pp.Google Scholar
  67. Zechmann, B., Muller, M., & Zellnig, G. (2003). Cytological modifications in zucchini yellow mosaic virus (ZYMV)-infected Styrian pumpkin plants. Archives of Virology, 148, 1119–1133.PubMedGoogle Scholar
  68. Zhao, J., Liu, Q., Zhang, H., Jia, Q., Hong, Y., & Liu, Y. (2013). The rubisco small subunit is involved in Tobamovirus movement and Tm-2 2-mediated extreme. Plant Physiology, 161, 374–383.Google Scholar
  69. Zhao, J., Zhang, X., Hong, Y., & Liu, Y. (2016). Chloroplast in plant-virus interaction. Frontiers in Microbiology, 7, 1565.PubMedPubMedCentralGoogle Scholar
  70. Zhao, S., Hong, W., Wu, J., Wang, Y., Ji, S., Zhu, S., Wei, C., Zhang, J., & Li, J. (2017). A viral protein promotes host SAMS1 activity and ethylene production for the benefit of virus infection. eLife, 6, e27529.PubMedPubMedCentralGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2019

Authors and Affiliations

  • Sarah Boyd Lade
    • 1
    Email author
  • Carla Román
    • 1
  • Ana Isabel del Cueto-Ginzo
    • 1
  • Luis Serrano
    • 1
  • Ester Sin
    • 1
  • María Angeles Achón
    • 1
  • Vicente Medina
    • 1
  1. 1.Department of Plant Production and Forestry ScienceUniversity of Lleida – Agrotecnio CenterLleidaSpain

Personalised recommendations