Advertisement

Tomato vein clearing leaf deformation virus, a new begomovirus species infecting tomato in Argentina

  • C. G. Vaghi Medina
  • V. A. Bornancini
  • P. M. López LambertiniEmail author
Article
  • 36 Downloads

Abstract

Begomoviruses (family Geminiviridae) cause economic damage around the world in tomato crops. Here, we present the molecular characterization of a new bipartite begomovirus that infects tomato in Argentina. Sequences analyses revealed that the DNA-A of this begomovirus shares the highest nucleotide percentage identity (81.3%) with Centrosema yellow spot virus (CenYSV). In phylogenetic studies, the DNA-A sequence was shown to be related to bipartite and monopartite begomoviruses from Brazil. Tomato plants biolistically inoculated with the new virus displayed vein clearing and leaf deformation symptoms, fulfilling the Koch’s postulate. We propose the tentative name tomato vein clearing leaf deformation virus (ToVCLDeV) for this new begomovirus species.

Keywords

Geminivirus Molecular characterization Biolistic inoculation Phylogeny Solanum lycopersicum 

Notes

Acknowledgments

This research work was supported by research project PE PNBIO-1131044 from the Instituto Nacional de Tecnología Agropecuaria (INTA). Veronica A. Bornancini holds a fellowship from the Consejo Nacional de Investigaciónes Científicas y Técnicas (CONICET). The authors are grateful to Verónica V. Ranieri for the excellent technical assistance and to Ing. Agr. María Gimena Marcatini for providing the samples.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal studies

This article does not contain any studies with human or animal subjects.

Supplementary material

10658_2019_1835_MOESM1_ESM.xlsx (13 kb)
ESM 1 List of bipartite and monopartite begomoviruses used in phylogenetic analysis. (XLSX 13 kb)
10658_2019_1835_MOESM2_ESM.fasta (279 kb)
ESM 2 Sequences alignment of begomoviruses DNA-A performed in MUSCLE and used in phylogenetic analysis (FASTA 278 kb)
10658_2019_1835_MOESM3_ESM.xlsx (30 kb)
ESM 3 Percentage pairwise identity matrix of ToVClDeV and representative of each South American begomovirus species sequences. (XLSX 30 kb)

References

  1. Briddon, R. W., Patil, B. L., Bagewadi, B., Nawaz-ul-Rehman, M. S., & Fauquet, C. M. (2010). Distinct evolutionary histories of the DNA-A and DNA-B components of bipartite begomoviruses. BMC Evolutionary Biology, 10, 97.  https://doi.org/10.1186/1471-2148-10-97.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Brown, J. K., Zerbini, F. M., Navas-Castillo, J., Moriones, E., Ramos-Sobrinho, R., Silva, J. C., Fiallo-Olivé, E., Briddon, R. W., Hernández-Zepeda, C., Idris, A., Malathi, V. G., Martin, D. P., Rivera-Bustamante, R., Ueda, S., & Varsani, A. (2015). Revision of Begomovirus taxonomy based on pairwise sequence comparisons. Archives of Virology, 160(6), 1593–1619.  https://doi.org/10.1007/s00705-015-2398-y.CrossRefPubMedGoogle Scholar
  3. Chen, G., Pan, H., Xie, W., Wang, S., Wu, Q., Fang, Y., Shi, X., & Zhang, Y. (2013). Virus infection of a weed increases vector attraction to and vector fitness on the weed. Scientific Reports, 3, 2253.  https://doi.org/10.1038/srep02253.CrossRefPubMedPubMedCentralGoogle Scholar
  4. De Barro, P. J., Liu, S. S., Boykin, L. M., & Dinsdale, A. B. (2011). Bemisia tabaci: a statement of species status. Annual Review of Entomology, 56, 1–19.  https://doi.org/10.1146/annurev-ento-112408-085504.CrossRefPubMedGoogle Scholar
  5. Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32, 1792–1797.  https://doi.org/10.1186/1471-2105-5-113.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Fernandes-Acioli, N.A.N., Fonseca, M.E.N., Pereira-Carvalho, R.C., Fontenele, R.S., Lacorte, C., Ribeiro, S.G., Boiteux, L.S. (2011). Sequência completa do DNA-A de uma nova espécie de Begomovirus infectando tomateiro no Estado de Tocantins, Brasil (Complete DNA-A sequence of a novel tomato-infecting Begomovirus species from Tocantins State, Brazil). Tropical Plant Pathology, 36 (Suplemento) XLIV Congresso Brasileiro de Fitopatologia - Bento Gonçalves RS.Google Scholar
  7. Fiallo-Olivé, E., Chirinos, D. T., Geraud-Pouey, F., Moriones, E., & Navas-Castillo, J. (2013). Complete genome sequences of two begomoviruses infecting weeds in Venezuela. Archives of Virology, 158(1), 277–280.  https://doi.org/10.1007/s00705-012-1451-3.CrossRefPubMedGoogle Scholar
  8. Fontes, E. P., Gladfelter, H. J., Schaffer, R. L., Petty, I. T., & Hanley-Bowdoin, L. (1994). Geminivirus replication origins have a modular organization. Plant Cell, 6(3), 405–416.  https://doi.org/10.1105/tpc.6.3.405.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Food and Agriculture Organization [FAO]. (2016). Available at: http://faostat3.fao.
  10. Guo, T., Zhao, J., Pan, L. L., Geng, L., Lei, T., Wang, X. W., & Liu, S. S. (2018). The level of midgut penetration of two begomoviruses affects their acquisition and transmission by two species of Bemisia tabaci. Virology, 515, 66–73.  https://doi.org/10.1016/j.virol.2017.12.004.CrossRefPubMedGoogle Scholar
  11. Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q., & Vinh, L. S. (2018). UFBoot2: improving the ultrafast bootstrap approximation. Molecular Biology and Evolution, 35, 518–522.  https://doi.org/10.1093/molbev/msx281.CrossRefPubMedGoogle Scholar
  12. Islam, W., Akutse, K. S., Qasim, M., Khan, K. A., Ghramh, H. A., Idrees, A., & Latif, S. (2018). Bemisia tabaci-mediated facilitation in diversity of begomoviruses: evidence from recent molecular studies. Microbial Pathogenesis, 123, 162–168.  https://doi.org/10.1016/j.micpath.2018.07.008.CrossRefPubMedGoogle Scholar
  13. Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A., & Jermiin, L. S. (2017). ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods, 14, 587–589.  https://doi.org/10.1038/nmeth.4285.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S., Duran, C., Thierer, T., Ashton, B., Meintjes, P., & Drummond, A. (2012). Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics, 28(12), 1647–1649.  https://doi.org/10.1093/bioinformatics/bts199.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Knierim, D., & Maiss, E. (2007). Application of Phi29 DNA polymerase in identification and full-length clone inoculation of tomato yellow leaf curl Thailand virus and tobacco leaf curl Thailand virus. Archives of Virology, 152(5), 941–954.  https://doi.org/10.1007/s00705-006-0914-9.CrossRefPubMedGoogle Scholar
  16. Lefeuvre, P., & Moriones, E. (2015). Recombination as a motor of host switches and virus emergence: geminiviruses as case studies. Current Opinion in Virology, 10, 14–19.  https://doi.org/10.1016/j.coviro.2014.12.005.CrossRefPubMedGoogle Scholar
  17. Liu, S. S., Colvin, J., & De Barro, P. J. (2012). Species concepts as applied to the whitefly Bemisia tabaci systematics: how many species are there? Journal of Integrative Agriculture, 11, 176–186.  https://doi.org/10.1016/S2095-3119(12)60002-1.CrossRefGoogle Scholar
  18. Mansoor, S., Zafar, Y., & Briddon, R. W. (2006). Geminivirus disease complexes: the threat is spreading. Trends in Plant Science, 11(5), 209–212.  https://doi.org/10.1016/j.tplants.2006.03.003.CrossRefPubMedGoogle Scholar
  19. Martin, D. P., Lefeuvre, P., Varsani, A., Hoareau, M., Semegni, J. Y., Dijoux, B., Vincent, C., Reynaud, B., & Lett, J. M. (2011). Complex recombination patterns arising during geminivirus coinfections preserve and demarcate biologically important intra-genome interaction networks. PLoS Pathogens, 7(9), e1002203.  https://doi.org/10.1371/journal.ppat.1002203.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Martin, D. P., Murrell, B., Golden, M., Khoosal, A., & Muhire, B. (2015). RDP4: detection and analysis of recombination patterns in virus genomes. Virus Evolution, 1(1), vev003.  https://doi.org/10.1093/ve/vev003.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Melgarejo, T. A., Kon, T., Rojas, M. R., Paz-Carrasco, L., Zerbini, F. M., & Gilbertson, R. L. (2013). Characterization of a new world monopartite begomovirus causing leaf curl disease of tomato in Ecuador and Peru reveals a new direction in geminivirus evolution. Journal of Virology, 87(10), 5397–5413.  https://doi.org/10.1128/JVI.00234-13.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Muhire, B., Martin, D. P., Brown, J. K., Navas-Castillo, J., Moriones, E., Zerbini, F. M., Rivera-Bustamante, R., Malathi, V. G., Briddon, R. W., & Varsani, A. (2013). A genome-wide pairwise-identity-based proposal for the classification of viruses in the genus Mastrevirus (family Geminiviridae). Archives of Virology, 158(6), 1411–1424.  https://doi.org/10.1007/s00705-012-1601-7.CrossRefPubMedGoogle Scholar
  23. Nassuth, A., Pollari, E., Helmeczy, K., Stewart, S., & Kofalvi, S. A. (2000). Improved RNA extraction and one-tube RT-PCR assay for simultaneous detection of control plant RNA plus several viruses in plant extracts. Journal of Virological Methods, 90(1), 37–49.  https://doi.org/10.1016/S0166-0934(00)00211-1.CrossRefPubMedGoogle Scholar
  24. Rojas, M. R., Gilbertson, R. L., Russell, D. R., & Maxwell, D. P. (1993). Use of degenerate primers in the polymerase chain reaction to detect whitefly-transmitted geminiviruses. Plant Disease, 77, 340–347.  https://doi.org/10.1094/PD-77-0340.CrossRefGoogle Scholar
  25. Santos, A. A., Florentino, L. H., Pires, A. B., & Fontes, E. P. (2008). Geminivirus: biolistic inoculation and molecular diagnosis. Methods in Molecular Biology, 451, 563–579.  https://doi.org/10.1007/978-1-59745-102-4_39.CrossRefPubMedGoogle Scholar
  26. Vaghi Medina, C. G., & López Lambertini, P. M. (2012). Tomato dwarf leaf virus, a New World begomovirus infecting tomato in Argentina. Archives of Virology, 157(10), 1975–1980.  https://doi.org/10.1007/s00705-012-1355-2.CrossRefPubMedGoogle Scholar
  27. Vaghi Medina, C. G., Martin, D. P., & López Lambertini, P. M. (2014). Tomato mottle wrinkle virus, a recombinant begomovirus infecting tomato in Argentina. Archives of Virology, 160(2), 581–585.  https://doi.org/10.1007/s00705-014-2216-y.CrossRefPubMedGoogle Scholar
  28. Zerbini, F. M., Briddon, R. W., Idris, A., Martin, D. P., Moriones, E., Navas-Castillo, J., Rivera-Bustamante, R., Roumagnac, P., Varsani, A., & Ictv Report Consortium. (2017). ICTV virus taxonomy profile: geminiviridae. The Journal of General Virology, 98, 131–133.  https://doi.org/10.1099/jgv.0.000738.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2019

Authors and Affiliations

  1. 1.Instituto de Patología Vegetal (IPAVE, CIAP-INTA)CórdobaArgentina

Personalised recommendations