European Journal of Plant Pathology

, Volume 155, Issue 3, pp 871–880 | Cite as

Cell wall degrading enzymes and their impact on Fusarium proliferatum pathogenicity

  • Anwar H. Sharafaddin
  • Younis K. Hamad
  • Mahmoud H. El_Komy
  • Yasser E. Ibrahim
  • Arya Widyawan
  • Younes Y. Molan
  • Amgad A. SalehEmail author


Fusarium proliferatum is one of the most pathogenic Fusarium species on date palm worldwide. We evaluated the colonization ability of 42 F. proliferatum strains collected from date palm trees with disease symptoms on detached leaflets of cvs Sheeshee and Sukkary. Cell wall degrading enzyme (CWDE) production by these strains was assessed with multiple relative enzyme activity (RA) indices. The ability of F. proliferatum strains to colonize leaflet cuttings varied, and there were significant differences (P < 0.05) in susceptibility between the Sheeshee and Sukkary cvs. All F. proliferatum strains tested could hydrolyze carboxymethylcellulose (CMC), citrus pectin and starch, with different capabilities. RA indices calculated from direct assessment of halo zones were consistent with fungal strain colonization ability, but ratio-based RA indices were not. Based on RA4 index of cellulases, F. proliferatum strains were divided into three groups. The first group (33% of strains) showed very strong reaction in hydrolysing CMC, the second group (62% of strains) showed strong reaction in hydrolysing CMC, and the third group (5%) showed moderate reaction in hydrolysing CMC. Most strains had moderate pectin-hydrolysis activities. Starch-hydrolysis activities ranged from weak to strong. Overall, there was a positive correlation between cellulase production and a strain’s colonization ability. Thus, CWDEs produced by F. proliferatum play a role in the colonization of date palm leaflets and hence may be important pathogenicity factors.


Colonization ability Hydrolysis Cellulases Pectinases Amylases 



The authors extend their appreciation to the Deanship of Scientific Research at King Saud University for funding this work through the research group no. RG-1440-001.

Compliance with ethical standards

Ethical statement

I testify, along with the co-authors, that the submitted manuscript has not been either submitted to more than one journal for simultaneous consideration or published previously in whole or in part elsewhere. All authors whose names appear on the manuscript have contributed sufficiently to the present study and therefore share collective responsibility and accountability for the results.

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants and/or animals

The presented work does not contain any studies with human participants or animals.

Informed consent

All the authors on the presented work agreed to submit this manuscript to be considered for publication in the European Journal of Plant Pathology.


  1. Abdalla, M., Al-Rokibah, A., Moretti, A., & Mule, G. (2000). Pathogenicity of toxigenic Fusarium proliferatum from date palm in Saudi Arabia. Plant Disease, 84(3), 321–324.PubMedCrossRefGoogle Scholar
  2. Abouamama, S., Noureddine, K., Anis, B., Ryme, T., Mostafa, C., & Mebrouk, K. (2018). Correlation between hydrolytic enzymes activity, geographical origin and pathogenicity of some isolates of Fusarium oxysporum f. sp. albedinis. Archives of Pharmacy & Pharmacology Research, 1(2), 1–5.CrossRefGoogle Scholar
  3. Bellincampi, D., Cervone, F., & Lionetti, V. (2014). Plant cell wall dynamics and wall-related susceptibility in plant-pathogen interactions. Frontiers in Plant Science, 5, 228.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Bradner, J. R., Gillings, M., & Nevalainen, K. M. H. (1999). Qualitative assessment of hydrolytic activities in antarctic microfungi grown at different temperatures on solid media. World Journal of Microbiology and Biotechnology, 15(1), 131–132. Scholar
  5. Brito, N., Espino, J. J., & González, C. (2006). The Endo-β-1,4-Xylanase Xyn11A is required for virulence in Botrytis cinerea. Molecular Plant-Microbe Interactions, 19(1), 25–32.PubMedCrossRefGoogle Scholar
  6. Castellá, G., Bragulat, M. R., & Cabañes, F. J. (1998). Extracellular enzymatic activity of Fusarium section Liseola isolates. Mycopathologia, 144(1), 57–62.CrossRefGoogle Scholar
  7. Castro, G. R., Baigorí, M. D., & Siñeriz, F. (1995). A plate technique for screening of inulin degrading microorganisms. Journal of Microbiological Methods, 22(1), 51–56.CrossRefGoogle Scholar
  8. Cha, S. D., Jeon, Y. J., Ahn, G. R., Han, J. I., Han, K. H., & Kim, S. H. (2007). Characterization of Fusarium oxysporum isolated from Paprika in Korea. Mycobiology, 35(2), 91–96.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Chang, H. X., Yendrek, C. R., Caetano-Anolles, G., & Hartman, G. L. (2016). Genomic characterization of plant cell wall degrading enzymes and in silico analysis of xylanses and polygalacturonases of Fusarium virguliforme. BMC Microbiology, 16(1), 147.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Cooper, R. M., Longman, D., Campbell, A., Henry, M., & Lees, P. E. (1988). Enzymic adaptation of cereal pathogens to the monocotyledonous primary wall. Physiological and Molecular Plant Pathology, 32(1), 33–47.CrossRefGoogle Scholar
  11. Dar, R. A., Saba, I., Shahnawaz, M., Sangale, M. K., Ade, A. B., Rather, S. A., & Qazi, P. H. (2013). Isolation, purification and characterization of carboxymethyl cellulase (CMCase) from endophytic Fusarium oxysporum producing podophyllotoxin. Advances in Enzyme Research, 1(4), 91–96.CrossRefGoogle Scholar
  12. El Modafar, C. & El Boustani, E. (2000). Relationship between cell wall susceptibility to cellulases and pectinases of Fusarium oxysporum and susceptibility of date palm cultivars. Biologia Plantarum, 43(4), 571–576.Google Scholar
  13. Fang, W., Pava-ripoll, M., Wang, S., & Leger, R. S. (2009). Protein kinase A regulates production of virulence determinants by the entomopathogenic fungus, Metarhizium anisopliae. Fungal Genetics and Biology, 46(3), 277–285.PubMedCrossRefGoogle Scholar
  14. Farrag, E. S., & Abo-Elyousr, K. A. (2011). Occurrence of some fungal diseases on date palm trees in upper Egypt and its control. Plant Pathology Journal, 10(4), 154–160.CrossRefGoogle Scholar
  15. Fawzi, E. (2003). Production and purification of β-glucosidase and protease by Fusarium proliferatum NRRL 26517 grown on Ficus nitida wastes. Annals of Microbiology, 53(4), 463–476.Google Scholar
  16. Giger, M., Baumgartner, H. R., & Zbinden, G. (1974). Toxicological effects of Evans blue and Congo red on blood platelets. Agents and Actions, 4(3), 173–180.PubMedCrossRefGoogle Scholar
  17. Gulati, R., Saxena, R. K., & Gupta, R. (1997). A rapid plate assay for screening l-asparaginase producing microorganisms. Letters in Applied Microbiology, 24(1), 23–26.PubMedCrossRefGoogle Scholar
  18. Haba, E., Bresco, O., Ferrer, C., Marqués, A., Busquets, M., & Manresa, A. (2000). Isolation of lipase-secreting bacteria by deploying used frying oil as selective substrate. Enzyme and Microbial Technology, 26(1), 40–44. Scholar
  19. Hameed, M. A. (2012). Inflorescence rot disease of date palm caused by Fusarium proliferatum in southern Iraq. African Journal of Biotechnology, 11, 8616–8621.CrossRefGoogle Scholar
  20. Hankin, L. & Anagnostakis, S. L. (1977). Solid media containing carboxymethylcellulose to detect Cx cellulase activity of microorganisms. Microbiology, 98(1), 109–115.Google Scholar
  21. Harris, P. J. (2000). Compositions of monocotyledon cell walls: Implications for biosystematics. In K. L. Wilson & D. Morrison (Eds.), Monocots: Systematics and evolution (pp. 114–126). Melbourne: CSIRO Publishing.Google Scholar
  22. Hasan, S. (2015). Screening of soil fungi for production of lytic enzymes. Annals of Applied Bio-Sciences, 2(4), A81–A87.Google Scholar
  23. Hasan, S., Ahmad, A., Purwar, A., Khan, N., Kundan, R., & Gupta, G. (2013). Production of extracellular enzymes in the entomopathogenic fungus Verticillium lecanii. Bioinformation, 9(5), 238–242.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Herculano, P. N., Lima, D. M. M., Fernandes, M. J. S., Neves, R. P., Souza-Motta, C. M., & Porto, A. L. F. (2011). Isolation of cellulolytic fungi from waste of castor (Ricinus communis L.). Current Microbiology, 62(5), 1416–1422.PubMedCrossRefGoogle Scholar
  25. Hernández-Fernaud, J. R., Marina, A., González, K., Vázquez, J., & Falcón, M. A. (2006). Production, partial characterization and mass spectrometric studies of the extracellular laccase activity from Fusarium proliferatum. Applied Microbiology and Biotechnology, 70(2), 212–221.CrossRefGoogle Scholar
  26. Jansen, C., Von Wettstein, D., Schäfer, W., Kogel, K.-H., Felk, A., & Maier, F. J. (2005). Infection patterns in barley and wheat spikes inoculated with wild-type and trichodiene synthase gene disrupted Fusarium graminearum. Proceedings of the National Academy of Sciences of the United States of America, 102(46), 16892–16897.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Jo, W. S., Bae, S. H., Choi, S. Y., Park, S. D., Yoo, Y. B., & Park, S. C. (2010). Development of detection methods for cellulolytic activity of Auricularia auricula-judae. Mycobiology, 38(1), 74–77.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Khaledi, N., Taheri, P., & Rastegar, M. F. (2017). Identification, virulence factors characterization, pathogenicity and aggressiveness analysis of Fusarium spp., causing wheat head blight in Iran. European Journal of Plant Pathology, 147(4), 897–918.CrossRefGoogle Scholar
  29. Kikot, G. E., Hours, R. A., & Alconada, T. M. (2009). Contribution of cell wall degrading enzymes to pathogenesis of Fusarium graminearum: A review. Journal of Basic Microbiology, 49(3), 231–241.PubMedCrossRefGoogle Scholar
  30. King, B. C., Waxman, K. D., Nenni, N. V., Walker, L. P., Bergstrom, G. C., & Gibson, D. M. (2011). Arsenal of plant cell wall degrading enzymes reflects host preference among plant pathogenic fungi. Biotechnology for Biofuels, 4(1), 4.PubMedPubMedCentralCrossRefGoogle Scholar
  31. Kubicek, C. P., Starr, T. L., & Glass, N. L. (2014). Plant cell wall-degrading enzymes and their secretion in plant-pathogenic fungi. Annual Review of Phytopathology, 52(1), 427–451.PubMedCrossRefGoogle Scholar
  32. Kwon, S. I., & Anderson, A. J. (2001). Laccase isozymes: Production by an opportunistic pathogen, a Fusarium proliferatum isolate from wheat. Physiological and Molecular Plant Pathology, 59(5), 235–242.CrossRefGoogle Scholar
  33. Kwon, H. W., Yoon, J. H., Kim, S. H., Hong, S. B., Cheon, Y., & Ko, S. J. (2007). Detection of extracellular enzymes activities in various Fusarium spp. Mycobiology, 35(3), 162–165.PubMedPubMedCentralCrossRefGoogle Scholar
  34. Li, T., Jian, Q., Wang, Y., Chen, F., Yang, C., Gong, L., Duan, X., Yang, B., & Jiang, Y. (2016). Inhibitory mechanism of butylated hydroxyanisole against infection of Fusarium proliferatum based on comparative proteomic analysis. Journal of Proteomics, 148, 1–11. Scholar
  35. Lim, G., Tan, T. K., & Rahim, N. A. (1987). Variations in amylase and protease activities among Rhizopus isolates. MIRCEN Journal of Applied Microbiology and Biotechnology, 3(3), 319–322.CrossRefGoogle Scholar
  36. Maia, T. F., & Fraga, M. E. (2017). Bioprospecting Aspergillus section Nigri in Atlantic Forest soil and plant litter. Arquivos do Instituto Biológico, 84, 1–7.CrossRefGoogle Scholar
  37. Mansoori, B. (2012). Fusarium proliferatum induces gum in xylem vessels as the cause of date bunch fading in Iran. Journal of Agricultural Science and Technology, 14(5), 1133–1140.Google Scholar
  38. Marín, S., Sanchis, V., Ramos, A. J., & Magan, N. (1998). Effect of water activity on hydrolytic enzyme production by Fusarium moniliforme and Fusarium proliferatum during colonisation of maize. International Journal of Food Microbiology, 42(3), 185–194.PubMedCrossRefGoogle Scholar
  39. Motallebi, M., Zamani, M. R., Jazayeri, O., & Harighi, M. J. (2002). Use of RAPD, enzyme activity staining, and colony size to differentiate phytopathogenic Fuzarium oxysporum isolates from Iran. Brazilian Journal of Microbiology, 33, 299–303.CrossRefGoogle Scholar
  40. Paccanaro, M. C., Sella, L., Castiglioni, C., Giacomello, F., Martínez-Rocha, A. L., D’Ovidio, R., Schäfer, W., & Favaron, F. (2017). Synergistic effect of different plant cell wall-degrading enzymes is important for virulence of Fusarium graminearum. Molecular Plant-Microbe Interactions, 30(11), 886–895.PubMedCrossRefGoogle Scholar
  41. Peterson, R. A., Bradner, J. R., Roberts, T. H., & Nevalainen, K. M. H. (2009). Fungi from koala (Phascolarctos cinereus) faeces exhibit a broad range of enzyme activities against recalcitrant substrates. Letters in Applied Microbiology, 48(2), 218–225.Google Scholar
  42. Pointing, S. B. (1999). Qualitative methods for the determination of lignocellulolytic enzyme production by tropical fungi. Fungal Diversity, 2, 17–31.Google Scholar
  43. Potshangbam, M., Devi, S. I., Sahoo, D., & Strobel, G. A. (2017). Functional characterization of endophytic fungal community associated with Oryza sativa L. and Zea mays L. Frontiers in Microbiology, 8(325).Google Scholar
  44. Saha, B. C. (2002). Production, purification and properties of xylanase from a newly isolated Fusarium proliferatum. Process Biochemistry, 37(11), 1279–1284.CrossRefGoogle Scholar
  45. Saha, B. C. (2003). Purification and properties of an extracellular β-xylosidase from a newly isolated Fusarium proliferatum. Bioresource Technology, 90(1), 33–38.PubMedCrossRefGoogle Scholar
  46. Saleh, A. A., Sharafaddin, A. H., El_Komy, M. H., Ibrahim, Y. E., Hamad, Y. K., & Molan, Y. Y. (2017). Fusarium species associated with date palm in Saudi Arabia. European Journal of Plant Pathology, 148(2), 367–377.CrossRefGoogle Scholar
  47. Sazci, A., Erenler, K., & Radford, A. (1986). Detection of cellulolytic fungi by using Congo red as an indicator: A comparative study with the dinitrosalicyclic acid reagent method. Journal of Applied Bacteriology, 61(6), 559–562.CrossRefGoogle Scholar
  48. Schmitz, K., Protzko, R., Zhang, L., & Benz, J. P. (2019). Spotlight on fungal pectin utilization-from phytopathogenicity to molecular recognition and industrial applications. Applied Microbiology and Biotechnology, 103(6), 2507–2524.PubMedCrossRefGoogle Scholar
  49. Shvetsova, S. V., Zhurishkina, E. V., Bobrov, K. S., Ronzhina, N. L., Lapina, I. M., Ivanen, D. R., Gagkaeva, T. Y., & Kulminskaya, A. A. (2015). The novel strain Fusarium proliferatum LE1 (RCAM02409) produces α-L-fucosidase and arylsulfatase during the growth on fucoidan. Journal of Basic Microbiology, 55(4), 471–479.PubMedCrossRefGoogle Scholar
  50. Yang, L., Xie, L., Xue, B., Goodwin, P. H., Quan, X., Zheng, C., et al. (2015). Comparative transcriptome profiling of the early infection of wheat roots by Gaeumannomyces graminis var. tritici. PLoS ONE, 10(4), e0120691.PubMedPubMedCentralCrossRefGoogle Scholar
  51. Yoon, J. H., Park, J. E., Suh, D. Y., Hong, S. B., Ko, S. J., & Kim, S. H. (2007). Comparison of dyes for easy detection of extracellular cellulases in fungi. Mycobiology, 35(1), 21–24.PubMedPubMedCentralCrossRefGoogle Scholar
  52. Zamani, M., Motallebi, M., & Harighi, M. (2001). Pectic enzyme patterns of Fusarium oxysporum virulent isolates from chickpea in Iran. Journal of Science Islamic Republic of Iran, 12(1), 17–22.Google Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2019

Authors and Affiliations

  • Anwar H. Sharafaddin
    • 1
  • Younis K. Hamad
    • 1
    • 2
  • Mahmoud H. El_Komy
    • 1
    • 3
  • Yasser E. Ibrahim
    • 1
    • 3
  • Arya Widyawan
    • 1
  • Younes Y. Molan
    • 1
  • Amgad A. Saleh
    • 1
    • 4
    Email author
  1. 1.Department of Plant Protection, College of Food and Agriculture SciencesKing Saud UniversityRiyadhKingdom of Saudi Arabia
  2. 2.Plant Pathology Department, Faculty of AgricultureAlexandria UniversityAlexandriaEgypt
  3. 3.Plant Pathology InstituteAgriculture Research CenterGizaEgypt
  4. 4.Agricultural Genetic Engineering Research InstituteAgriculture Research CenterGizaEgypt

Personalised recommendations