Advertisement

Using multilocus sequence analysis to distinguish pathogenic from saprotrophic strains of Pseudomonas from stone fruit and kiwifruit

  • Sandra B. VisnovskyEmail author
  • Maria V. Marroni
  • Shamini Pushparajah
  • Kerry R. Everett
  • Robert K. Taylor
  • Boris A. Vinatzer
  • Andrew R. Pitman
Original Article
  • 562 Downloads

Abstract

A variety of pseudomonads are associated with diseases of Actinidia and Prunus plants. A recently emerged virulent haplotype of Pseudomonas syringae pv. actinidiae (biovar 3) causes severe stem cankers on kiwifruit associated with dieback of canes. Pseudomonas syringae also causes one of the most important bacterial diseases affecting cherry orchards worldwide. Bacterial canker of cherry limits production in orchards in New Zealand. Less virulent and non-pathogenic pseudomonads also exist on both hosts, providing an opportunity to investigate the diversity of pseudomonads on these hosts, to find identifiers for new emerging highly pathogenic strains that could be used at the border to prevent incursions. In this study, genetic typing was used to explore the diversity of Pseudomonas on kiwifruit and a variety of Prunus plants. Multilocus sequence analysis (MLSA) of four house-keeping genes separated pseudomonads from kiwifruit and stone fruit plants into two major groups: one corresponding to P. syringae sensu lato and one corresponding to other Pseudomonas species. Within P. syringae sensu lato, strains were assigned to six of the nine previously described genomospecies or five of the seven previously described phylogroups. In the other major group, strains from both hosts clustered with a variety of well characterised non-pathogenic pseudomonads. The classification of strains into the two major groups is of practical diagnostic value since the most common pathogens of fruit trees belong to the P. syringae species complex. Furthermore, our analysis suggests that molecular diagnostics might be possible for the classification of strains into these two groups as a first tool to screen for exotic pathogenic pseudomonads on germplasm imports of both commodities.

Keywords

Pseudomonas MLSA Kiwifruit Stone fruits 

Notes

Acknowledgements

This work was funded by the Better Border Biosecurity programme (B3) (www.b3nz.org).

The authors thanks Drs Erik Rikkerink, Hayley Ridgway and Faulk Kalamorz from The New Zealand Institute for Plant and Food Research Ltd. for their valuable feedback to the manuscript.

Compliance with ethical standards

The manuscript complies with ethical rules of the European Journal of Plant Pathology, as reported in the “Ethical Responsibilities of Authors” in the “Instruction for Authors” section.

Conflict of interest and human or animal participants

There are no potential conflicts of interest, and the research does not involve human participants and / or animals.

Ethical approval

All authors have approved the manuscript and agreed with its submission to European Journal of Plant Pathology.

Supplementary material

10658_2019_1799_MOESM1_ESM.png (449 kb)
Figure S1 An unrooted Maximum Likelihood tree (Guindon et al. 2010) constructed using concatenated partial DNA sequences of gyrB and gapA from pseudomonads collected from kiwifruit plants, other hosts and the environment. The pseudomonads included P. viridiflava strains and other pseudomonads downloaded from the Plant Associated and Environmental Microbes Database (PAMDB). Twenty-seven isolates Group A from our collection from kiwifruit and from Prunus were also included. This analysis supported our multilocus sequence analysis (MLSA) data, confirming the identity of ABAC 43 and ICMP 11289 as P. viridiflava. ICMP 3272 and ICMP 13303, which were considered P. viridiflava, did not cluster with the P. viridiflava isolates, indicating that they are probably P. syringae phylogroup III. (PNG 449 kb)
10658_2019_1799_MOESM2_ESM.docx (21 kb)
Table S1 (DOCX 20 kb)
10658_2019_1799_MOESM3_ESM.docx (16 kb)
Table S2 (DOCX 15.9 kb)

References

  1. Agrios, G. N. (1997). Plant diseases caused by prokaryotes: Bacteria and mollicutes. Plant Pathology, 4, 407–470.Google Scholar
  2. Almeida, N. F., Yan, S., Cai, R., Clarke, C. R., Morris, C. E., Schaad, N. W., Schuenzel, E. L., Lacy, G. H., Sun, X., & Jones, J. B. (2010). PAMDB, a multilocus sequence typing and analysis database and website for plant-associated microbes. Phytopathology, 100, 208–215.CrossRefGoogle Scholar
  3. Amato, P., Parazols, M., Sancelme, M., Laj, P., Mailhot, G., & Delort, A.-M. (2006). Microorganisms isolated from the water phase of tropospheric clouds at the Puy de Dôme: Major groups and growth abilities at low temperatures. FEMS Microbiology Ecology, 59, 242–254.CrossRefGoogle Scholar
  4. Balestra, G., & Varvaro, L. (1997). Pseudomonas syringae pv. Syringae causal agent of disease on floral buds of Actinidia deliciosa (a. Chev) Liang et Ferguson in Italy. Journal of Phytopathology, 145, 375–378.CrossRefGoogle Scholar
  5. Balestra, G., Mazzaglia, A., & Rossetti, A. (2008a). Outbreak of bacterial blossom blight caused by Pseudomonas viridiflava on Actinidia chinensis kiwifruit plants in Italy. Plant Disease, 92, 1707–1707.CrossRefGoogle Scholar
  6. Balestra, G., Mazzaglia, A., Spinelli, R., Graziani, S., Quattrucci, A., & Rossetti, A. (2008b). Cancro batterico su Actinidia chinensis. L’Informatore Agrario, 38, 75–76.Google Scholar
  7. Balestra, G. M., Perestrelo, L., Mazzaglia, A., & Rossetti, A. (2009). First report of blossom blight caused by pseudomonas syringae on kiwifruit plants in Portugal. Journal of Plant Pathology, 91, 231.Google Scholar
  8. Bartoli, C., Berge, O., Monteil, C. L., Guilbaud, C., Balestra, G. M., Varvaro, L., Jones, C., Dangl, J. L., Baltrus, D. A., & Sands, D. C. (2014). The Pseudomonas viridiflava phylogroups in the P. syringae species complex are characterized by genetic variability and phenotypic plasticity of pathogenicity-related traits. Environmental Microbiology, 16, 2301–2315.CrossRefGoogle Scholar
  9. Bartoli, C., Lamichhane, J. R., Berge, O., Guilbaud, C., Varvaro, L., Balestra, G. M., Vinatzer, B. A., & Morris, C. E. (2015). A framework to gauge the epidemic potential of plant pathogens in environmental reservoirs: The example of kiwifruit canker. Molecular Plant Pathology, 16, 137–149.  https://doi.org/10.1111/mpp.12167.CrossRefGoogle Scholar
  10. Berge, O., Monteil, C. L., Bartoli, C., Chandeysson, C., Guilbaud, C., Sands, D. C., & Morris, C. E. (2014). A user's guide to a data base of the diversity of Pseudomonas syringae and its application to classifying strains in this phylogenetic complex. PLoS One, 9, e105547.CrossRefGoogle Scholar
  11. Borschinger, B., Bartoli, C., Chandeysson, C., Guilbaud, C., Parisi, L., Bourgeay, J. F., Buisson, E., & Morris, C. E. (2016). A set of PCRs for rapid identification and characterization of Pseudomonas syringae phylogroups. Journal of Applied Microbiology, 120, 714–723.  https://doi.org/10.1111/jam.13017.CrossRefGoogle Scholar
  12. Bultreys, A., & Kaluzna, M. (2010). Bacterial cankers caused by Pseudomonas syringae on stone fruit species with special emphasis on the Pathovars Syringae and Morsprunorum race 1 and race 2. Journal of Plant Pathology, 92, S1.Google Scholar
  13. Chapman, J. R., Taylor, R. K., Weir, B. S., Romberg, M. K., Vanneste, J. L., Luck, J., & Alexander, B. J. R. (2012). Phylogenetic relationships among global populations of Pseudomonas syringae pv. actinidiae. Phytopathology, 102, 1034–1044.  https://doi.org/10.1094/phyto-03-12-0064-r.CrossRefGoogle Scholar
  14. Crosse, J. (1963). Bacterial canker of stone-fruits. Annals of Applied Biology, 52, 97–104.CrossRefGoogle Scholar
  15. Crosse, J. (1966). Epidemiological relations of the pseudomonad pathogens of deciduous fruit trees. Annual Review of Phytopathology, 4, 291–310.CrossRefGoogle Scholar
  16. Cunty, A., Poliakoff, F., Rivoal, C., Cesbron, S., Fischer-Le, S. M., Lemaire, C., Jacques, M. A., Manceau, C., & Vanneste, J. L. (2015). Characterization of Pseudomonas syringae pv. actinidiae (Psa) isolated from France and assignment of Psa biovar 4 to a de novo pathovar: Pseudomonas syringae pv. actinidifoliorum pv. Nov. Plant Pathology, 64, 582–596.  https://doi.org/10.1111/ppa.12297.CrossRefGoogle Scholar
  17. Drummond A. J., Ashton B., Buxton S., Cheung M., Cooper A., Heled J. & Kearse M. (2013). Geneious v6.1 created by Biomatters. Retrieved 27 January, 2013, from http://www.geneious.com
  18. Dye, D., Bradbury, J., Goto, M., Hayward, A., Lelliott, R., & Schroth, M. (1980). International standards for naming pathovars of phytopathogenic bacteria and a list of pathovar names and pathotype strains. Review of Plant Pathology, 59, 153–168.Google Scholar
  19. Edgar, R. C. (2004). MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32, 1792–1797.CrossRefGoogle Scholar
  20. Everett K. R. & Henshall W. R (1994). Epidemiology and population ecology of kiwifruit blossom blight. Plant Pathology, 43, 824–830.Google Scholar
  21. Everett K. R., Taylor R. K., Romberg M. K., Rees-George J., Fullerton R. A., Vanneste J. L. & Manning M. A. (2011). First report of Pseudomonas syringae pv. actinidiae causing kiwifruit bacterial canker in New Zealand. Australasian Plant Disease Notes, 6, 67-71.  https://doi.org/10.1007/s13314-011-0023-9.
  22. Ferrante, P., & Scortichini, M. (2009). Identification of pseudomonas syringae pv. Actinidiae as causal agent of bacterial canker of yellow kiwifruit (Actinidia chinensis Planchon) in Central Italy. Journal of Phytopathology, 157, 768–770.CrossRefGoogle Scholar
  23. Frampton R. A., Taylor C., Holguín Moreno A. V., Visnovsky S. B., Petty N. K., Pitman A. R. & Fineran P. C. (2014). Identification of bacteriophages for the biocontrol of the kiwifruit canker phytopathogen Pseudomonas syringae pv. actinidiae. Applied and Environmental Microbiology, 80(7), 2216  https://doi.org/10.1128/aem.00062-14.
  24. Fujikawa, T., & Sawada, H. (2016). Genome analysis of the kiwifruit canker pathogen pseudomonas syringae pv. Actinidiae biovar 5. Scientific Reports, 6, 21399.CrossRefGoogle Scholar
  25. Fujikawa, T., & Sawada, H. (2019). Genome analysis of pseudomonas syringae pv. Actinidiae biovar 6, which produces the phytotoxins, phaseolotoxin and coronatine. Scientific Reports, 9.  https://doi.org/10.1038/s41598-019-40754-9.
  26. Gardan, L., Shafik, H., Belouin, S., Broch, R., Grimont, F., & Grimont, P. (1999). DNA relatedness among the pathovars of Pseudomonas syringae and description of Pseudomonas tremae sp. nov. and Pseudomonas cannabina sp. nov.(ex Sutic and Dowson 1959). International Journal of Systematic Bacteriology, 49, 469–478.CrossRefGoogle Scholar
  27. Garlant, L., Koskinen, P., Rouhiainen, L., Laine, P., Paulin, L., Auvinen, P., Holm, L., & Pirhonen, M. (2013). Genome sequence of Dickeya solani, a new soft rot pathogen of potato, suggests its emergence may be related to a novel combination of non-ribosomal peptide/polyketide synthetase clusters. Diversity, 5, 824–842.CrossRefGoogle Scholar
  28. Glaeser, S. P., & Kämpfer, P. (2015). Multilocus sequence analysis (MLSA) in prokaryotic taxonomy. Systematic and Applied Microbiology, 38, 237–245.  https://doi.org/10.1016/j.syapm.2015.03.007.CrossRefGoogle Scholar
  29. Gomila, M., Peña, A., Mulet, M., Lalucat, J., & García-Valdés, E. (2015). Phylogenomics and systematics in pseudomonas. Frontiers in Microbiology, 6.  https://doi.org/10.3389/fmicb.2015.00214.
  30. González, A. J., Rodicio, M. R., & Mendoza, M. C. (2003). Identification of an emergent and atypical Pseudomonas viridiflava lineage causing bacteriosis in plants of agronomic importance in a Spanish region. Applied and Environmental Microbiology, 69, 2936–2941.CrossRefGoogle Scholar
  31. Goode, M. J., & Sasser, M. (1980). Prevention-the key to controlling bacterial spot and bacterial speck of tomato. Plant Disease, 64, 831–834.CrossRefGoogle Scholar
  32. Guilbaud, C., Morris, C. E., Barakat, M., Ortet, P., & Berge, O. (2016). Isolation and identification of Pseudomonas syringae facilitated by a PCR targeting the whole P. syringae group. FEMS Microbiology Ecology, 92(1).Google Scholar
  33. Guindon, S., Dufayard, J.-F., Lefort, V., Anisimova, M., Hordijk, W., & Gascuel, O. (2010). New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Systematic Biology, 59, 307–321.  https://doi.org/10.1093/sysbio/syq010.CrossRefGoogle Scholar
  34. Harper, S., Ward, L., & Clover, G. (2010). Development of LAMP and real-time PCR methods for the rapid detection of Xylella fastidiosa for quarantine and field applications. Phytopathology, 100, 1282–1288.CrossRefGoogle Scholar
  35. Hirano, S. S., & Upper, C. D. (1990). Population biology and epidemiology of Pseudomonas syringae. Annual Review of Phytopathology, 28, 155–177.CrossRefGoogle Scholar
  36. Hu, F., Fang, D., Young, J., & Xie, L. (1998). Identification of the pathogen caused bacterial blight of kiwifruit in China. Acta Phytopathologica Sinica, 28, 175–181.Google Scholar
  37. Hu, F. P., Young, J. M., & Jones, D. S. (1999). Evidence that bacterial blight of kiwifruit, caused by a Pseudomonas sp., was introduced into New Zealand from China. Journal of Phytopathology, 147, 89–97.CrossRefGoogle Scholar
  38. Hwang, M. S., Morgan, R. L., Sarkar, S. F., Wang, P. W., & Guttman, D. S. (2005). Phylogenetic characterization of virulence and resistance phenotypes of Pseudomonas syringae. Applied and Environmental Microbiology, 71, 5182–5191.CrossRefGoogle Scholar
  39. Ieki H. (1993). Kiwifruit diseases in Japan. Japan Pesticide Information, 11–13.Google Scholar
  40. Jakob, K., Goss, E. M., Araki, H., Van, T., Kreitman, M., & Bergelson, J. (2002). Pseudomonas viridiflava and P. syringae - natural pathogens of Arabidopsis thaliana. Molecular Plant-Microbe Interactions, 15, 1195–1203.  https://doi.org/10.1094/mpmi.2002.15.12.1195.CrossRefGoogle Scholar
  41. Kałużna, M., Willems, A., Pothier, J. F., Ruinelli, M., Sobiczewski, P., & Puławska, J. (2016). Pseudomonas cerasi sp. nov.(non griffin, 1911) isolated from diseased tissue of cherry. Systematic and Applied Microbiology, 39, 370–377.CrossRefGoogle Scholar
  42. Koh, Y. J., Lee, D. H., Shin, J. S., & Hur, J.-S. (2001). Chemical and cultural control of bacterial blossom blight of kiwifruit caused by Pseudomonas syringae in Korea. New Zealand Journal of Crop and Horticultural Science, 29, 29–34.CrossRefGoogle Scholar
  43. Lamichhane, J. R., Varvaro, L., Parisi, L., Audergon, J.-M., & Morris, C. E. (2014). Disease and frost damage of woody plants caused by Pseudomonas syringae: Seeing the forest for the trees. Advances in Agronomy, 126, 235–295.CrossRefGoogle Scholar
  44. Lee, Y. S., Han, H. S., Kim, G. H., Koh, Y. J., Hur, J.-S., & Jung, J. S. (2009). Causal agents of blossom blight of kiwifruit in Korea. Plant Pathology Journal, 25, 220–224.  https://doi.org/10.5423/ppj.2009.25.3.220.CrossRefGoogle Scholar
  45. Lelliott, R., Billing, E., & Hayward, A. (1966). A determinative scheme for the fluorescent plant pathogenic pseudomonads. Journal of Applied Microbiology, 29, 470–489.Google Scholar
  46. Lindemann, J., Arny, D. C., & Upper, C. D. (1984). Use of an apparent infection threshold population of Pseudomonas syringae to predict incidence and severity of brown spot of bean. Phytopathology, 74, 1334–1339.CrossRefGoogle Scholar
  47. Loper, J. E., Hassan, K. A., Mavrodi, D. V., Davis, E. W., II, L. C. K., Shaffer, B. T., Elbourne, L. D. H., Stockwell, V. O., Hartney, S. L., Breakwell, K., Henkels, M. D., Tetu, S. G., Rangel, L. I., Kidarsa, T. A., Wilson, N. L., van de Mortel, J. E., Song, C., Blumhagen, R., Radune, D., Hostetler, J. B., Brinkac, L. M., Durkin, A. S., Kluepfel, D. A., Wechter, W. P., Anderson, A. J., Kim, Y. C., Pierson, L. S., III, P. E. A., Lindow, S. E., Kobayashi, D. Y., Raaijmakers, J. M., Weller, D. M., Thomashow, L. S., Allen, A. E., & Paulsen, I. T. (2012). Comparative Genomics of Plant-Associated Pseudomonas spp.: Insights into Diversity and Inheritance of Traits Involved in Multitrophic Interactions. PLoS Genet, 8, e1002784.  https://doi.org/10.1371/journal.pgen.1002784.CrossRefGoogle Scholar
  48. Lovell, H. C., Mansfield, J. W., Godfrey, S. A., Jackson, R. W., Hancock, J. T., & Arnold, D. L. (2009). Bacterial evolution by genomic island transfer occurs via DNA transformation in planta. Current Biology, 19, 1586–1590.CrossRefGoogle Scholar
  49. Maiden, M. C., Bygraves, J. A., Feil, E., Morelli, G., Russell, J. E., Urwin, R., Zhang, Q., Zhou, J., Zurth, K., & Caugant, D. A. (1998). Multilocus sequence typing: A portable approach to the identification of clones within populations of pathogenic microorganisms. Proceedings of the National Academy of Sciences, 95, 3140–3145.CrossRefGoogle Scholar
  50. Marchi, G., Viti, C., Giovannetti, L., & Surico, G. (2005). Spread of Levan-positive populations of pseudomonas savastanoi pv. Savastanoi, the causal agent of olive knot, in Central Italy. European Journal of Plant Pathology, 112, 101–112.  https://doi.org/10.1007/s10658-005-0804-0.CrossRefGoogle Scholar
  51. Mazzaglia, A., Studholme, D. J., Taratufolo, M. C., Cai, R., Almeida, N. F., Goodman, T., Guttman, D. S., Vinatzer, B. A., & Balestra, G. M. (2012). Pseudomonas syringae pv. actinidiae (PSA) isolates from recent bacterial canker of kiwifruit outbreaks belong to the same genetic lineage. PLoS ONE, 7, e36518.CrossRefGoogle Scholar
  52. McCann, H. C., Rikkerink, E. H., Bertels, F., Fiers, M., Lu, A., Rees-George, J., Andersen, M. T., Gleave, A. P., Haubold, B., & Wohlers, M. W. (2013). Genomic analysis of the kiwifruit pathogen Pseudomonas syringae pv. actinidiae provides insight into the origins of an emergent plant disease. PLoS Pathog, 9, e1003503.CrossRefGoogle Scholar
  53. Miyoshi, T., & Tachibana, Y. (1996). Epidemiological studies on bacterial blossom blight of kiwifruit 1. Differences in susceptibility of flower bud to pseudomonas syringae, a causal pathogen of bacterial blossom blight. Annals of the Phytopathological Society of Japan, 62, 517–522.CrossRefGoogle Scholar
  54. Monteil, C. L., Guilbaud, C., Glaux, C., Lafolie, F., Soubeyrand, S., & Morris, C. E. (2012). Emigration of the plant pathogen Pseudomonas syringae from leaf litter contributes to its population dynamics in alpine snowpack. Environmental Microbiology, 14, 2099–2112.  https://doi.org/10.1111/j.1462-2920.2011.02680.x.CrossRefGoogle Scholar
  55. Morán, F., Marco-Noales, E., Escrich, A., Barbé, S., & López, M. M. (2018). Biodiversity and biogeography of three pseudomonas syringae Pathovars which affect kiwi fruit cultivation. Biodiversity Online Journal, 1, 1–3.Google Scholar
  56. Morris, C. E., Sands, D. C., Vinatzer, B. A., Glaux, C., Guilbaud, C., Buffiere, A., Yan, S., Dominguez, H., & Thompson, B. M. (2008). The life history of the plant pathogen Pseudomonas syringae is linked to the water cycle. The ISME Journal, 2, 321–334.CrossRefGoogle Scholar
  57. Morris, C. E., Bardin, M., Kinkel, L. L., Moury, B., Nicot, P. C., & Sands, D. C. (2009). Expanding the paradigms of plant pathogen life history and evolution of parasitic fitness beyond agricultural boundaries. PLoS Pathogens, 5, e1000693.CrossRefGoogle Scholar
  58. O'Brien, H. E., Thakur, S., Gong, Y., Fung, P., Zhang, J., Yuan, L., Wang, P. W., Yong, C., Scortichini, M., & Guttman, D. S. (2012). Extensive remodeling of the Pseudomonas syringae pv. avellanae type III secretome associated with two independent host shifts onto hazelnut. BMC Microbiology, 12.  https://doi.org/10.1186/1471-2180-12-141.
  59. Parkinson, N., Bryant, R., Bew, J., & Elphinstone, J. (2011). Rapid phylogenetic identification of members of the Pseudomonas syringae species complex using the rpoD locus. Plant Pathology, 60, 338–344.  https://doi.org/10.1111/j.1365-3059.2010.02366.x.CrossRefGoogle Scholar
  60. Pitman, A. R., Jackson, R. W., Mansfield, J. W., Kaitell, V., Thwaites, R., & Arnold, D. L. (2005). Exposure to host resistance mechanisms drives evolution of bacterial virulence in plants. Current Biology, 15, 2230–2235.CrossRefGoogle Scholar
  61. Purahong, W., Orru, L., Donati, I., Perpetuini, G., Cellini, A., Lamontanara, A., Michelotti, V., Tacconi, G., & Spinelli, F. (2018). Plant microbiome and its link to plant health: Host species, organs and pseudomonas syringae pv. Actinidiae infection shaping bacterial Phyllosphere communities of kiwifruit plants. Frontiers in Plant Science, 9.  https://doi.org/10.3389/fpls.2018.01563.
  62. Rees-George, J., Vanneste, J. L., Cornish, D. A., Pushparajah, I. P. S., Yu, J., Templeton, M. D., & Everett, K. R. (2010). Detection of Pseudomonas syringae pv. actinidiae using polymerase chain reaction (PCR) primers based on the 16S–23S rDNA intertranscribed spacer region and comparison with PCR primers based on other gene regions. Plant Pathology, 59, 453–464.  https://doi.org/10.1111/j.1365-3059.2010.02259.x.CrossRefGoogle Scholar
  63. Sarkar, S. F., & Guttman, D. S. (2004). Evolution of the Core genome of Pseudomonas syringae, a highly clonal, endemic plant pathogen. Applied and Environmental Microbiology, 70, 1999–2012.  https://doi.org/10.1128/aem.70.4.1999-2012.2004.CrossRefGoogle Scholar
  64. Sarris P. F., Trantas E. A., Mpalantinaki E., Ververidis F. & Goumas D. E. (2012). Pseudomonas viridiflava, a multi host plant pathogen with significant genetic variation at the molecular level, Pseudomonas viridiflava, a Multi Host Plant Pathogen with Significant Genetic Variation at the Molecular Level.Google Scholar
  65. Schober, B. M., & Zadoks, J. C. (1999). Survival of softrot bacteria during the storage of witloof chicory roots. Journal of Phytopathology-Phytopathologische Zeitschrift, 147, 461–466.CrossRefGoogle Scholar
  66. Scortichini, M., Marcelletti, S., Ferrante, P., Petriccione, M., & Firrao, G. (2012). Pseudomonas syringae pv. actinidiae: A re-emerging, multi-faceted, pandemic pathogen. Molecular Plant Pathology, 13, 631–640.  https://doi.org/10.1111/j.1364-3703.2012.00788.x.CrossRefGoogle Scholar
  67. Shaffer, B. T., & Lighthart, B. (1997). Survey of culturable airborne bacteria at four diverse locations in Oregon: Urban, rural, forest, and coastal. Microbial Ecology, 34, 167–177.CrossRefGoogle Scholar
  68. Stockwell, V. O., Johnson, K. B., Sugar, D., & Loper, J. E. (2010). Control of fire blight by Pseudomonas fluorescens A506 and Pantoea vagans C9-1 applied as single strains and mixed Inocula. Phytopathology, 100, 1330–1339.  https://doi.org/10.1094/phyto-03-10-0097.CrossRefGoogle Scholar
  69. Straub, C., Colombi, E., Li, L., Huang, H., Templeton, M. D., McCann, H. C., & Rainey, P. B. (2018). The ecological genetics of Pseudomonas syringae from kiwifruit leaves. Environmental Microbiology, 20, 2066–2084.  https://doi.org/10.1111/1462-2920.14092.CrossRefGoogle Scholar
  70. Takikawa, Y., Serizawa, S., Ichikawa, T., Tsuyumu, S., & Goto, M. (1989). Pseudomonas syringae pv. actinidiae pv. Nov = the causal bacterium of canker of kiwifruit in Japan. Japanese Journal of Phytopathology, 55, 437–444.  https://doi.org/10.3186/jjphytopath.55.437.CrossRefGoogle Scholar
  71. Tomlinson, J., & Boonham, N. (2008). Potential of LAMP for detection of plant pathogens. CAB reviews: Perspectives in agriculture, veterinary science. Nutrition and Natural Resources, 3, 1–7.Google Scholar
  72. Tyson, J. L., Rees-George, J., Curtis, C. L., Manning, M. A., & Fullerton, R. A. (2012). Survival of Pseudomonas syringae pv. actinidiae on the orchard floor over winter. New Zealand Plant Protection, 65, 25–28.Google Scholar
  73. Vanneste, J. L., Yu, J., Cornish, D. A., Tanner, D. J., Windner, R., Chapman, J. R., Taylor, R. K., Mackay, J. F., & Dowlut, S. (2013). Identification, virulence, and distribution of two biovars of Pseudomonas syringae pv. actinidiae in New Zealand. Plant Disease, 97, 708–719.  https://doi.org/10.1094/pdis-07-12-0700-re.CrossRefGoogle Scholar
  74. Vicente, J. G., Alves, J. P., Russell, K., & Roberts, S. J. (2004). Identification and discrimination of Pseudomonas syringae isolates from wild cherry in England. European Journal of Plant Pathology, 110, 337–351.CrossRefGoogle Scholar
  75. Visnovsky, S. B., Fiers, M., Lu, A., Panda, P., Taylor, R., & Pitman, A. R. (2016). Draft genome sequences of 18 strains of Pseudomonas isolated from kiwifruit plants in New Zealand and overseas. Genome Announcements, 4.  https://doi.org/10.1128/genomeA.00061-16.
  76. Wilkie, J. P., Dye, D. W., & Watson, D. R. W. (1973). Further hosts of Pseudomonas viridiflava. New Zealand Journal of Agricultural Research, 16, 315–323.CrossRefGoogle Scholar
  77. Young, J. M. (1987). New plant disease record in New Zealand: Pseudomonas syringae pv. persicae from nectarine, peach, and Japanese plum. New Zealand Journal of Agricultural Research, 30, 235–247.CrossRefGoogle Scholar
  78. Young, J. M. (1988). Bacterial blight of kiwifruit in New Zealand. Bulletin OEPP, 18, 131–140.CrossRefGoogle Scholar
  79. Young, J. M. (2010). Taxonomy of Pseudomonas syringae. Journal of Plant Pathology, S5–S14.Google Scholar
  80. Young J. M. & Fletcher M. J. (1997). International Collection of Micro-organisms from Plants: catalogue accessions 1-12989. (Landcare research, PO Box 40, Lincoln 8152, New Zealand.Google Scholar
  81. Young, J. M., Gardan, L., Ren, X. Z., & Hu, F. P. (1997). Genomic and phenotypic characterization of the bacterium causing blight of kiwifruit in New Zealand. Plant Pathology, 46, 857–864.CrossRefGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2019

Authors and Affiliations

  1. 1.The New Zealand Institute for Plant and Food Research LtdChristchurchNew Zealand
  2. 2.The New Zealand Institute for Plant and Food Research LtdAucklandNew Zealand
  3. 3.Better Border BiosecurityAucklandNew Zealand
  4. 4.Plant Health and Environment LaboratoryMinistry for Primary IndustriesAucklandNew Zealand
  5. 5.School of Plant and Environmental SciencesVirginia TechBlacksburgUSA

Personalised recommendations