Skip to main content
Log in

Isolation and genetic characterization of Erwinia amylovora bacteria from Kyrgyzstan

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Fire Blight, an economically relevant disease of apple, pear, and quince trees that is caused by the Gram-negative bacterium Erwinia amylovora, was first reported from Kyrgyzstan in 2008. One decade later, the disease has spread across the northern part of the country, affecting fruit orchards mainly in Chuy and Issyk-kul regions. Using semi-selective cultural media, bacteria have been isolated from plant material sampled in infested orchards from different locations in Kyrgyzstan, and 16S rRNA gene sequence determination together with diagnostic PCR have been used to identify E. amylovora bacteria among isolates. The assignment to this taxonomic species has been corroborated by phylogenetic reconstruction using multilocus sequence analysis, and a short-sequence repeat (SSR) marker has been employed to estimate genetic diversity across the isolates. CRISPR analysis has revealed both a previously unreported CRISPR-2 array pattern and a close relationship of Kyrgyz E. amylovora isolates to strains present in Europe and the Middle East. This study presents the first consistent molecular taxonomic characterization of E. amylovora bacteria from Kyrgyzstan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

References

  • Acimovic, S. G., Zeng, Q., McGhee, G. C., Sundin, G. W., & Wise, J. C. (2015). Control of fire blight (Erwinia amylovora) on apple trees with trunk-injected plant resistance inducers and antibiotics and assessment of induction of pathogenesis-related protein genes. Frontiers in Plant Science, 6, 16.

    PubMed  PubMed Central  Google Scholar 

  • Adeolu, M., Alnajar, S., Naushad, S., & Gupta, R. (2016). Genome-based phylogeny and taxonomy of the 'Enterobacteriales': Proposal for Enterobacterales Ord. Nov. divided into the families Enterobacteriaceae, Erwiniaceae fam. Nov., Pectobacteriaceae fam. Nov., Yersiniaceae fam. Nov., Hafniaceae fam. Nov., Morganellaceae fam. Nov., and Budviciaceae fam. Nov. International Journal of Systematic and Evolutionary Microbiology, 66, 5575–5599. https://doi.org/10.1099/ijsem.0.001485.

    Article  CAS  PubMed  Google Scholar 

  • Agrios, G. N. (2005). Plant diseases caused by prokaryotes: bacteria and mollicutes. In Plant Pathology, 5th edition (pp. 615–623). Elsevier Academic Press.

  • Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W., & Lipman, D. J. (1997). Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Research, 25, 3389–3402.

    Article  CAS  Google Scholar 

  • Anonymous. (2013). PM 7/20 (2)* Erwinia amylovora. Bulletin OEPP/EPPO Bulletin, 43, 21–45.

    Article  Google Scholar 

  • Barionovi, D., Giorgi, S., Stöger, A. R., Ruppitsch, W., & Scortichini, M. (2006). Characterization of Erwinia amylovora strains from different host plants using repetitive-sequences PCR analysis, and restriction fragment length polymorphism and short-sequence DNA repeats of plasmid pEA29. Journal of Applied Microbiology, 100, 1084–1094.

    Article  CAS  Google Scholar 

  • Brady, C., Cleenwerck, I., Venter, S., Vancanneyt, M., Swings, J., & Coutinho, T. (2008). Phylogeny and identification of Pantoea species associated with plants, humans and the natural environment based on multilocus sequence analysis (MLSA). Systematic and Applied Microbiology, 31, 447–460.

    Article  CAS  Google Scholar 

  • Brady, C., Cleenwerck, I., Venter, S., Coutinho, T., & De Vos, P. (2013). Taxonomic evaluation of the genus Enterobacter based on multilocus sequence analysis (MLSA): Proposal to reclassify E. nimipressuralis and E. amnigenus into Lelliottia gen. Nov. as Lelliottia nimipressuralis comb. nov. and Lelliottia amnigena comb. nov., respectively, E. gergoviae and E. pyrinus into Pluralibacter gen. Nov. as Pluralibacter gergoviae comb. nov. and Pluralibacter pyrinus comb. nov., respectively, E. cowanii, E. radicincitans, E. oryzae and E. arachidis into Kosakonia gen. Nov. as Kosakonia cowanii comb. nov., Kosakonia radicincitans comb. nov., Kosakonia oryzae comb. nov. and Kosakonia arachidis comb. nov., respectively, and E. turicensis, E. helveticus and E. pulveris into Cronobacter as Cronobacter zurichensis nom. Nov., Cronobacter helveticus comb. nov. and Cronobacter pulveris comb. nov., respectively, and emended description of the genera Enterobacter and Cronobacter. Systematic and Applied Microbiology, 36, 309–319.

    Article  Google Scholar 

  • Brady, C., Hunter, G., Kirk, S., Arnold, D., & Denman, S. (2014). Rahnella victoriana sp. nov., Rahnella bruchi sp. nov., Rahnella woolbedingensis sp. nov., classification of Rahnella genomospecies 2 and 3 as Rahnella variigena sp. nov. and Rahnella inusitata sp. nov., respectively and emended description of the genus Rahnella. Systematic and Applied Microbiology, 37, 545–552. https://doi.org/10.1016/j.syapm.2014.09.001.

    Article  PubMed  Google Scholar 

  • Chakaev, J. S., & Chakaeva, A. S. (2010). Fire blight of fruit trees in Kyrgyzstan. Izvestija National Academy of Sciences of Kyrgyzstan, 4, 61–64 in Russian.

    Google Scholar 

  • Doolotkeldieva, T., & Bobushova, S. (2016). Fire blight disease caused by Erwinia amylovora on Rosaceae plants in Kyrgyzstan and biological agents to control this disease. Advances in Microbiology, 6, 831–851.

    Article  CAS  Google Scholar 

  • Dootkulova, G.M., Soldatov, I.V., Chakaev, J.Sh. (2017). Stability of apple introducers to bacterial burn in the conditions of the Gareev Botanical Garden of the Natl. Acad. Sci. of Kyrgyzstan. Proceedings of the International Scientific Conference: Modern Conservation of the Biodiversity of the Plant World, Bishkek, 05.10.2017, pp. 85–91 (in Russian).

  • Facey, P. D., Méric, G., Hitchings, M. D., Pachebat, J. A., Hegarty, M. J., Chen, X., Morgan, L. V. A., Hoeppner, J. E., Whitten, M. M. A., Kirk, W. D. J., Dyson, P. J., Sheppard, S. K., & Sol, R. D. (2015). Draft genomes, phylogenetic reconstruction, and comparative genomics of two novel cohabiting bacterial symbionts isolated from Frankliniella occidentalis. Genome Biology and Evolution, 7, 2188–2202.

    Article  CAS  Google Scholar 

  • Gottsberger, R. A. (2010). Development and evaluation of a real-time PCR assay targeting chromosomal DNA of Erwinia amylovora. Letters in Applied Microbiology, 51, 285–292.

    Article  CAS  Google Scholar 

  • Grissa, I., Vergnaud, G., & Pourcel, C. (2007). The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats. BMC Bioinformatics, 8, 172.

    Article  Google Scholar 

  • Jock, S., & Geider, K. (2004). Molecular differentiation of Erwinia amylovora strains from North America and of two Asian pear pathogens by analyses of PFGE patterns and hrpN genes. Environmental Microbiology, 6, 480–490.

    Article  CAS  Google Scholar 

  • Jock, S., Jacob, T., Kim, W. S., Hildebrand, M., Vosberg, H. P., & Geider, K. (2003). Instability of short-sequence DNA repeats of pear pathogenic Erwinia strains from Japan and Erwinia amylovora fruit tree and raspberry strains. Molecular Genetics and Genomics, 268, 739–749.

    CAS  PubMed  Google Scholar 

  • Jock, S., Wensing, A., Pulawska, J., Drenova, N., Dreo, T., & Geider, K. (2013). Molecular analyses of Erwinia amylovora strains isolated in Russia, Poland, Slovenia and Austria describing further spread of fire blight in Europe. Microbiological Research, 168, 447–454.

    Article  CAS  Google Scholar 

  • Kim, W.-S., & Geider, K. (1999). Analysis of variable short-sequence DNA repeats on the 29kb plasmid of Erwinia amylovora strains. European Journal of Plant Pathology, 105, 703–713.

    Article  CAS  Google Scholar 

  • Lecomte, P., Manceau, C., Paulin, J. P., & Keck, M. (1997). Identification by PCR analysis on plasmid pEA29 of isolates of Erwinia amylovora responsible for an outbreak in Central Europe. European Journal of Plant Pathology, 103, 91–98.

    Article  CAS  Google Scholar 

  • Llop, P., Bonaterra, A., Peñalver, J., & López, M. M. (2000). Development of a highly sensitive nested-PCR procedure using a single closed tube for detection of Erwinia amylovora in asymptomatic plant material. Applied and Environmental Microbiology, 66, 2071–2078.

    Article  CAS  Google Scholar 

  • McGhee, G. C., & Sundin, G. W. (2012). Erwinia amylovora CRISPR elements provide new tools for evaluating strain diversity and for microbial source tracking. PLoS One, 7, e41706. https://doi.org/10.1371/journal.pone.0041706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller, T. D., & Schroth, M. N. (1972). Monitoring the epiphytic population of Erwinia amylovora on pear with a selective medium. Phytopathology, 62, 1175–1182.

    Article  Google Scholar 

  • Powney, R., Beer, S. V., Plummer, K., Luck, J., & Rodoni, B. (2011). The specificity of PCR-based protocols for detection of Erwinia amylovora. Australasian Plant Pathology, 40, 87–97.

    Article  Google Scholar 

  • Rezzonico, F., Smits, T. H., & Duffy, B. (2011). Diversity, evolution, and functionality of clustered regularly interspaced short palindromic repeat (CRISPR) regions in the fire blight pathogen Erwinia amylovora. Applied and Environmental Microbiology, 77, 3819–3829. https://doi.org/10.1128/AEM.00177-11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rousseau, C., Gonnet, M., Le Romancer, M., & Nicolas, J. (2009). CRISPI: A CRISPR interactive database. Bioinformatics, 25, 3317–3318. https://doi.org/10.1093/bioinformatics/btp586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruppitsch, W., Stöger, A. R., & Keck, M. (2004). Stability of short sequence repeats and their application for the characterization of Erwinia amylovora strains. FEMS Microbiology Letters, 234, 1–8.

    Article  CAS  Google Scholar 

  • Schnabel, E. L., & Jones, A. L. (1998). Instability of a pEA29 marker in Erwinia amylovora previously used for strain classification. Plant Disease, 82, 1334–1336.

    Article  CAS  Google Scholar 

  • Shariat, N., & Dudley, E. G. (2014). CRISPRs: Molecular signatures used for pathogen subtyping. Applied and Environmental Microbiology, 80, 430–439. https://doi.org/10.1128/AEM.02790-13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slack, S. M., Zeng, Q., Outwater, C. A., & Sundin, G. W. (2017). Microbiological examination of Erwinia amylovora exopolysaccharide ooze. Phytopathology, 107, 403–411. https://doi.org/10.1094/PHYTO-09-16-0352-R.

    Article  CAS  PubMed  Google Scholar 

  • Stöger, A., Schaffer, J., & Ruppitsch, W. (2006). A rapid and sensitive method for direct detection of Erwinia amylovora in symptomatic and asymptomatic plant tissues by polymerase chain reaction. Journal of Phytopathology, 154, 469–473.

    Article  Google Scholar 

  • Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA 6: Molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30, 2725–2729.

    Article  CAS  Google Scholar 

  • Taylor, R. K., Guilford, P., Clark, R. G., Hal, C. N., & Forster, R. L. S. (2001). Detection of Erwinia amylovora in plant material using novel polymerase chain reaction (PCR) primers. New Zealand Journal of Crop and Horticultural Science, 29, 35–43.

    Article  CAS  Google Scholar 

  • Thompson, S. (2000) Epidemiology of fire blight. In: Fire blight, the Disease and its Causative Agent, Erwinia amylovora (Ed. Vanneste, J). CAB International, Wallingford (GB).

  • Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). ClustalW: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22, 4673–4680.

    Article  CAS  Google Scholar 

  • Van der Zwet, T., Beer, S. V. (1995) Fire blight – its nature, prevention and control. A Practical Guide to Integrated Disease Management. USDA Agricultural Information Bulletin No,631, Washington (US).

  • Weisburg, W. G., Barns, S. M., Pelletier, D. A., & Lane, D. J. (1991). 16S ribosomal DNA amplification for phylogenetic study. Journal of Bacteriology, 173, 697–703.

    Article  CAS  Google Scholar 

  • Zhang, Z., Schwartz, S., Wagner, L., & Miller, W. (2000). A greedy algorithm for aligning DNA sequences. Journal of Computational Biology, 7, 203–214.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge receipt of financial support from the German Ministry of Education and Research (BMBF) under funding ID 01DK17004 (research project BioControl). Saikal Bobushova has been granted an individual research scholarship by the German Academic Exchange Service (DAAD; grant number 91692517).

Funding

This study was funded by the German Ministry of Education and Research (BMBF) (grant number 01DK17004) and by the German Academic Exchange Service (DAAD) (grant number 91692517).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tinatin Doolotkeldieva, Saikal Bobushova or Andreas Leclerque.

Ethics declarations

Conflict of interest

Each of the five authors, namely Tinatin Doolotkeldieva, Saikal Bobushova, Christina Schuster, Mahabat Konurbaeva, and Andreas Leclerque, declares that he/she has no conflict of interest.

Research involving humans or animals

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

ESM 1

(PDF 4432 kb)

ESM 2

(DOC 5730 kb)

ESM 3

(DOC 61 kb)

ESM 4

(DOC 261 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doolotkeldieva, T., Bobushova, S., Schuster, C. et al. Isolation and genetic characterization of Erwinia amylovora bacteria from Kyrgyzstan. Eur J Plant Pathol 155, 677–686 (2019). https://doi.org/10.1007/s10658-019-01790-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-019-01790-3

Keywords

Navigation