European Journal of Plant Pathology

, Volume 155, Issue 2, pp 435–444 | Cite as

Soil fumigation with mustard essential oil to control bacterial wilt in tomato

  • Nadson de Carvalho PontesEmail author
  • Jaqueline Kiyomi Yamada
  • Miriam Fumiko Fujinawa
  • Onkar Dev Dhingra
  • José Rogério de Oliveira
Original Article


In vitro experiments showed that six isolates, belonging to different biovars, were equally susceptible to mustard essential oil (MEO) vapor. The proportion of cell mortality and colony growth inhibition were directly related to the dose of MEO. A 24 h exposure to 1 or 2 μL of AITC per liter of box volume resulted in mortality of 89% and 92% of cells, respectively, and exposure to 10 μL L−1 resulted in 100% cell mortality. The growth of developing colonies was reduced by 89% at 2 or 4 μL L−1 and by 96% at 6 or 10 μL L−1. The leakage of intracellular materials increased with increasing doses of MEO vapor. The decline in soil inoculum density by fumigation was directly related to the MEO dose. The initial inoculum density of approximately 3 × 105 colony-forming units per gram of soil declined by 67, 91 and 96% at fumigation doses of 25, 50 and 75 μL of allyl isothiocyanate (AITC) per liter of soil, respectively. The pathogen was not detected at a fumigation dose of 100 μL L−1. Disease control was also related to the fumigation dose. After 48 days, the bacterial wilt symptoms did not develop on the tomatoes when the soil was fumigated at 100 μL L−1 or higher.


Mustard essential oil Control of bacterial wilt Plant essential oil Ralstonia solanacearum 



The first author would like to express their gratitude to Fundação de Amparo à Pesquisa do Estado de Minas Gerais - FAPEMIG for their M.Sc. fellowship. O. D. Dhingra would like to thank CNPq for his research fellowship.

Funding Information

This study was funded by Fundação de Amparo à Pesquisa do Estado de Minas Gerais - FAPEMIG

Compliance with ethical standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Research involving human participants and or animals

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Additional informed consent was obtained from all individual participants for whom identifying information is included in this article.


  1. Abd-Alla, M. A., & Haggag, W. M. (2013). Use of some plant essential oils as post-harvest botanical fungicides in the management of anthracnose disease of mango fruits (Mangi feraindica L.) caused by Colletotrichum gloeosporioides (penz). International Journal of Agriculture and Forestry, 3(1), 1–6.Google Scholar
  2. Arthy, J. R., Akiew, E. B., Kirkegaard, J. A., & Trevorrow, P. R. (2005). Using Brassica spp. as biofumigants to reduce the population of Ralstonia solanacearum. In C. Allen, P. Prior, & A. C. Hayward (Eds.), Bacterial wilt disease and the Ralstonia solanacearum species complex (pp. 159–165). St. Paul: American Phytopathological Society Press.Google Scholar
  3. Bandyopadhyay, S., & Khalko, S. (2016). Biofumigation-an eco-friendly approach for managing bacterial wilt and soft rot disease of ginger. Indian Phytopathology, 69(1), 53–56.Google Scholar
  4. Borek, V., Morra, M. J., Brown, P. D., & Mccaffrey, J. P. (1995). Transformation of the glucosinolate-derived allelochemicals allyl isothiocyanate and allylnitrile in soil. Journal of Agriculture and Food Chemistry, 43(7), 1935–1940.CrossRefGoogle Scholar
  5. Cox, S. D., Gustafson, J. E., Mann, C. M., Markham, J. L., Liew, Y. C., Hartland, R. P., Bell, H. C., Warmington, J. R., & Wyllie, S. G. (1998). Tea tree oil causes K+ leakage and inhibits respiration in Escherichia coli. Letters in Applied Microbiology, 26(5), 355–358.CrossRefGoogle Scholar
  6. Deberdt, P., Perrin, B., Coranson-Beaudu, R., Duyck, P. F., & Wicker, E. (2012). Effect of Allium fistulosum extract on Ralstonia solanacearum populations and tomato bacterial wilt. Plant Disease, 96(5), 687–692.CrossRefGoogle Scholar
  7. Dhingra, O. D., Costa, M. L. N., & Silva, G. J. (2004a). Potential of allyl isothiocyanate to control Rhizoctonia solani seedling damping off and seedling blight in transplant production. Journal of Phytopathology, 152(6), 352–357.CrossRefGoogle Scholar
  8. Dhingra, O. D., Costa, M. L. N., Silva, J. G. J., & Mizubuti, E. S. G. (2004b). Essential oil of mustard to control Rhizoctonia solani causing seedling damping off and seedling blight in nursery. Fitopatologia Brasileira, 29(6), 683–686.CrossRefGoogle Scholar
  9. Dhingra, O. D., Jham, G. N., Rodrigues, F. A., Silva, G. J., Jr., & Costa, M. L. N. (2009a). Fumigation with essential oil of mustard retards fungal growth and accumulation of ergosterol and free fatty acid in stored shelled groundnuts. Journal of Stored Products Research, 45(1), 24–31.CrossRefGoogle Scholar
  10. Dhingra, O. D., Jham, G. N., Rodrigues, F. A., Silva, G. J., Jr., & Costa, M. L. N. (2009b). Retardation of fungal deterioration of stored soybeans by fumigation with mustard essential oil. Australasian Plant Pathology, 38(5), 540–545.CrossRefGoogle Scholar
  11. Duniway, J. M. (2002). Status of chemical alternatives to methyl bromide for pre-plant fumigation of soil. Phytopathology, 92(12), 1337–1343.CrossRefGoogle Scholar
  12. Elphinstone, J. G. (2005). The current bacterial wilt situation: a global overview. In C. Allen, P. Prior, & A. C. Hayward (Eds.), Bacterial Wilt: the disease and the Ralstonia solanacearum species complex (pp. 9–28). St. Paul: APS Press.Google Scholar
  13. Graham, J., Jones, D. A., & Lloyd, A. B. (1979). Survival of Pseudomonas solanacearum race 3 in plant debris and in latently infected potato tubers. Phytopathology, 69(10), 1100–1103.CrossRefGoogle Scholar
  14. Harvey, S. G., Hannahan, H. N., & Sams, C. E. (2002). Indian mustard and allyl isothiocyanate inhibit Sclerotium rolfsii. Journal of the American Society for Horticultural Science, 127(1), 27–31.CrossRefGoogle Scholar
  15. Hayward, A. C. (1991). Biology and epidemiology of bacterial wilt caused by Pseudomonas solanacearum. Annual Review of Phytopathology, 29(1), 65–87.CrossRefGoogle Scholar
  16. Hong, J. C., Momol, T. M., Ji, P., Olson, S. M., Colee, J., & Jones, J. B. (2011). Management of bacterial wilt in tomatoes with thymol and acibenzolar-S-methyl. Crop Protection, 30(10), 1340–1345.CrossRefGoogle Scholar
  17. Ji, P., Momol, M. T., Olson, S. M., Pradhanang, P. M., & Jones, J. B. (2005). Evaluation of thymol as biofumigant for control of bacterial wilt of tomato under field conditions. Plant Disease, 89(5), 497–500.CrossRefGoogle Scholar
  18. Kelman, A. (1954). The relationship of pathogenicity in Pseudomonas solanacearum to colony appearance on a tetrazolium medium. Phytopathology, 44(12), 693–695.Google Scholar
  19. Kirkegaard, J. A., Sarwar, M., & Matthiessen, J. N. (1998). Assessing the biofumigation potential of crucifers. Acta Horticulturae, (459, 1), 105–112.Google Scholar
  20. Lage, D. A. C. (2009). Fumigação do solo com óleo essencial de mostarda para o controle da murcha de fusário em tomateiro. Viçosa: Universidade Federal de Viçosa.Google Scholar
  21. Lin, C. M., Kim, J., Du, W. X., & Wei, C. I. (2000a). Bactericidal activity of isothiocyanate against pathogens on fresh produce. Journal of Food Protection, 63(1), 25–30.CrossRefGoogle Scholar
  22. Lin, C. M., Preston, J. F., & Wei, C. I. (2000b). Antibacterial mechanism of allyl isothiocyanate. Food Protection, 63(6), 727–734.CrossRefGoogle Scholar
  23. Messiha, N., van Diepeningen, A., Wenneker, M., van Beuningen, A., Janse, J., Coenen, T., Termorshuizen, A., van Bruggen, A., & Blok, W. (2007). Biological soil disinfestation (BSD), a new control method for potato brown rot, caused by Ralstonia solanacearum race 3 biovar 2. European Journal of Plant Pathology, 117(4), 403–415.CrossRefGoogle Scholar
  24. Oliveira, R. D. L., Dhingra, O. D., Lima, A. O., Jham, G. N., Berhow, M. A., Holloway, R. K., & Vaughn, S. F. (2011). Glucosinolate content and nematicidal activity of Brazilian wild mustard tissues against Meloidogyne incognita in tomato. Plant and Soil, 341(1–2), 155–164.CrossRefGoogle Scholar
  25. Olivier, A. R., Uda, Y., Bang, S. W., Honjo, H., Fukami, M., & Fukui, R. (2006). Dried residues of specific cruciferous plants incorporated into soil can suppress the growth of Ralstonia solanacearum, independently of glucosinolate content of the residues. Microbes and Environments, 21(4), 216–226.CrossRefGoogle Scholar
  26. Pradhanang, P. M., Momol, M. T., Olson, S. M., & Jones, J. B. (2003). Effects of plant essential oils on Ralstonia solanacearum population density and bacterial wilt incidence in tomato. Plant Disease, 87(4), 423–427.CrossRefGoogle Scholar
  27. Ren, Z., Li, Y., Fang, W., Yan, D., Huang, B., Zhu, J., Wang, X., Wang, X., Wang, Q., Guo, M. & Cao, A. (2018). Evaluation of allyl isothiocyanate as a soil fumigant against soil‐borne diseases in commercial tomato (Lycopersicon esculentum Mill.) production in China. Pest Management Science, 74(9), 2146–2155.Google Scholar
  28. Santos, B. M., Gilreath, J. P., Motis, T. N., Noling, J. W., Jones, J. P., & Norton, J. A. (2006). Comparing methyl bromide alternatives for soilborne disease, nematode and weed management in fresh market tomato. Crop Protection, 25(7), 690–695.CrossRefGoogle Scholar
  29. Schaad, N. W., Jones, J. B., & Chun, W. (2001). Laboratory guide for identification of plant pathogenic bacteria (3th ed.). Minnesota: American Phytopathological Society.Google Scholar
  30. Schurt, D. A. (2006). Potencial do isotiocianato de alilo no controle de Sclerotium rolfsii e Sclerotinia sclerotiorum. Viçosa: Universidade Federal de Viçosa.Google Scholar
  31. Sharma, J. P., & Kumar, S. (2004). Effect of crop rotation on population dynamics of Ralstonia solanacearum in tomato wilt sick soil. Indian Phytopathology, 57(1), 80–81.Google Scholar
  32. Shofran, B. G., Purrington, S. T., Breidt, F., & Fleming, H. P. (1998). Antimicrobial properties of sinigrin and its hydrolysis products. Journal of Food Science, 63(4), 621–624.CrossRefGoogle Scholar
  33. Song, L., Morrison, J. J., Botting, N. P., & Thornalley, P. J. (2005). Analysis of glucosinolates, isothiocyanates, and amine degradation products in vegetable extracts and blood plasma by LC–MS/MS. Analytical Biochemistry, 347(2), 234–243.CrossRefGoogle Scholar
  34. van Elsas, J. D., van Overbeek, L. S., Bailey, M. J., Schönfeld, J., & Smalla, K. (2005). Fate of Ralstonia solanacearum biovar 2 as affected by conditions and soil treatments in temperate climate zones. In C. Allen, P. Prior, & A. C. Hayward (Eds.), Bacterial wilt disease and the Ralstonia solanacearum species complex. St. Paul: American Phytopathological Society Press.Google Scholar
  35. Zasada, I. A., & Ferris, H. (2003). Sensitivity of Meloidogyne javanica and Tylenchulus semipenetrans to Isothiocyanates in laboratory assays. Phytopathology, 93(6), 747–750.CrossRefGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2019

Authors and Affiliations

  • Nadson de Carvalho Pontes
    • 1
    Email author
  • Jaqueline Kiyomi Yamada
    • 1
  • Miriam Fumiko Fujinawa
    • 1
  • Onkar Dev Dhingra
    • 2
  • José Rogério de Oliveira
    • 2
  1. 1.Instituto Federal GoianoMorrinhosBrazil
  2. 2.Departamento de FitopatologiaUniversidade Federal de ViçosaViçosaBrazil

Personalised recommendations