Advertisement

Influence of surface characteristics on germination and early growth of Botryosphaeriaceae species

  • Jackie Sammonds
  • Marlene V. Jaspers
  • E. Eirian JonesEmail author
Article
  • 58 Downloads

Abstract

This study investigated the effect of surface wettability, hardness and surface contact on the germination and subsequent development of Botryosphaeriaceae species conidia. Mean percent germination for isolates Neofusicoccum luteum MM558, N. luteum CC445, N. parvum G652 and Botryosphaeria dothidea 007 was highest on cellulose which was the most hydrophilic surface (72.2%, 76.9%, 52.4% and 74.9%, respectively), but did not differ between the other surfaces tested (glass, polystyrene and Parafilm M™). Germ tube growth for all isolates was least on cellulose and similar on the other surfaces. Cellulose agar assays indicated that mycelia could be utilising the cellulose as a food source. Germination assays on surfaces of different hardness showed no discernible patterns of germination or growth related to hardness. Further, there was no effect on germination of surface contact versus continuous shaking of conidial suspensions for isolate N. luteum MM558. These assays demonstrated that conidia of the Botryosphaeriaceae were able to germinate on a variety of surfaces with this flexibility indicative of their reported pathogenicity of different host tissues.

Keywords

Botryosphaeriales species Germination Hydrophobicity Surface contact Surface hardness Trunk pathogens 

Notes

Acknowledgements

The authors would like to thank Lincoln University for funding this research.

Funding

Funding was provided by Lincoln University.

Compliance with ethical standards

Conflict of interest

None of the authors declare a conflict of interest, with all authors consenting to publication.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. Adebayo, A. A., & Harris, R. F. (1971). Fungal growth responses to osmotic as compared to matric water potential. Proceedings Soil Science Society of America, 35, 465–469.CrossRefGoogle Scholar
  2. Amiri, A., Cholodowski, D., & Bompeix, G. (2005). Adhesion and germination of waterborne and airborne conidia of Penicillium expansum to apple and inert surfaces. Physiological and Molecular Plant Pathology, 67(1), 40–48.CrossRefGoogle Scholar
  3. Amponsah, N. T., Jones, E. E., Ridgway, H. J., & Jaspers, M. V. (2009). Rainwater dispersal of Botryosphaeria conidia from infected grapevines. New Zealand Plant Protection, 62, 228–233.Google Scholar
  4. Amponsah, N. T., Jones, E. E., Ridgway, H. J., & Jaspers, M. V. (2012a). Microscopy of some interactions between Botryosphaeriaceae species and grapevine tissues. Australasian Plant Pathology, 41(6), 665–673.CrossRefGoogle Scholar
  5. Amponsah, N. T., Jones, E. E., Ridgway, H. J., & Jaspers, M. V. (2012b). Susceptibility of grapevine tissues to Neofusicoccum luteum conidial infection. Plant Pathology, 61(4), 719–729.CrossRefGoogle Scholar
  6. Apoga, D., Jansson, H.-B., & Tunlid, A. (2001). Adhesion of conidia and germlings of the plant pathogenic fungus Bipolaris sorokiniana to solid surfaces. Mycological Research, 105(10), 1251–1260.CrossRefGoogle Scholar
  7. Baskarathevan, J. (2011). Botryosphaeriaceous infection in New Zealand vineyards: Identification population structure and genetic diversity. PhD Thesis: Lincoln University, Lincoln, New Zealand.Google Scholar
  8. Carver, T. L. W., & Ingerson, S. M. (1987). Responses of Erysiphe graminis germlings to contact with artificial and host surfaces. Physiological and Molecular Plant Pathology, 30, 359–372.CrossRefGoogle Scholar
  9. Chaky, J., Anderson, K., Moss, M., & Vaillancourt, L. (2001). Surface hydrophobicity and surface rigidity induce spore germination in Colletotrichum graminicola. Phytopathology, 91(6), 558–564.CrossRefGoogle Scholar
  10. Doehlemann, G., Berndt, P., & Hahn, M. (2006). Different signalling pathways involving a Gαprotein, cAMP and a MAP kinase control germination of Botrytis cinerea conidia. Molecular Microbiology, 59(3), 821–835.CrossRefGoogle Scholar
  11. Egley, G. H. (1994). Substrate surface influences upon germination of Colletotrichum truncatum conidia. Canadian Journal of Botany, 72(12), 1758–1765.CrossRefGoogle Scholar
  12. Espinoza, J. G., Briceño, E. X., Chávez, E. R., Úrbez-Torres, J. R., & Latorre, B. A. (2009). Neofusicoccum spp. associated with stem canker and dieback of blueberry in Chile. Plant Disease, 93(11), 1187–1194.CrossRefGoogle Scholar
  13. Guest, D., & Brown, J. (1997). Infection processes. In J. F. Brown & H. J. Ogle (Eds.), Plant pathogens and plant diseases (pp. 245–262). Armidale: Rockvale Publications.Google Scholar
  14. Ilmén, M., Saloheimo, A., Onnela, M. L., & Penttilä, M. E. (1997). Regulation of cellulase gene expression in the filamentous fungus Trichoderma reesei. Applied and Environmental Microbiology, 63(4), 1298–1306.Google Scholar
  15. Jelitto, T. C., Page, H. A., & Read, N. D. (1994). Role of external signals in regulating the pre-penetration phase of infection by the rice blast fungus Magnaporthe grisea. Planta, 194(4), 471–477.CrossRefGoogle Scholar
  16. Jo, W.-S., Bae, S.-H., Cho, D.-H., Park, S.-D., Yoo, Y.-B., & Park, S.-C. (2009). Optimal medium conditions for the detection of cellulolytic activity in Ganoderma lucidum. Mycobiology, 37(4), 313–316.CrossRefGoogle Scholar
  17. Jones, E. E., Stewart, A., & Whipps, J. M. (2011). Water potential affects Coniothyrium minitans growth, germination and parasitism of Sclerotinia sclerotiorum sclerotia. Fungal Biology, 115(9), 871–881.CrossRefGoogle Scholar
  18. Kasana, R. C., Salwan, R., Dhar, H., Dutt, S., & Gulati, A. (2008). A rapid and easy method for the detection of microbial cellulases on agar plates using Gram’s iodine. Current Microbiology, 57(5), 503–507.CrossRefGoogle Scholar
  19. Kunoh, H., Yamaoka, N., Yoshioka, H., & Nicholson, R. L. (1988). Preparation of the infection court by Erysiphe graminis: I. Contact-mediated changes in morphology of the conidium surface. Experimental Mycology, 12(4), 325–335.CrossRefGoogle Scholar
  20. Kuo, K., & Hoch, H. C. (1996). Germination of Phyllosticta ampelicida pycnidiospores: Prerequisite of adhesion to the substratum and the relationship of substratum wettability. Fungal Genetics and Biology, 20(1), 18–29.CrossRefGoogle Scholar
  21. Li, M., Gao, Z., Hui, M., Zhou, S., Yang, D., Yang, B., Yi, J., & Yang, F. (2012). Pathogenicity of cell wall degrading enzymes produced by Botryodiplodia theobromae pat. Against mangoes. Agricultural Biotechnology, 1(6), 18–21.Google Scholar
  22. Magan, N., & Lynch, J. M. (1986). Water potential, growth and cellulolysis of fungi involved in decomposition of cereal residues. Journal of General Microbiology, 132(5), 1181–1187.Google Scholar
  23. Meguro, A., Fujita, K., Kunoh, H., Carver, T. W., & Nicholson, R. (2001). Release of the extracellular matrix from conidia of Blumeria graminis in relation to germination. Mycoscience, 42(2), 201–209.CrossRefGoogle Scholar
  24. Nadeau, M. P., Dunphy, G. B., & Boisvert, J. L. (1995). Effects of physical factors on the development of secondary conidia of Erynia conica (Zygomycetes: Entomophthorales), a pathogen of adult black flies (Diptera: Simuliidae). Experimental Mycology, 19, 324–329.CrossRefGoogle Scholar
  25. Nesci, A., Etcheverry, M., & Magan, N. (2004). Osmotic and matric potential effects on growth, sugar alcohol and sugar accumulation by Aspergillus section Flavi strains from Argentina. Journal of Applied Microbiology, 96(5), 965–972.CrossRefGoogle Scholar
  26. Ritz, K., & Young, I. M. (2004). Interactions between soil structure and fungi. Mycologist, 18(02), 52–59.CrossRefGoogle Scholar
  27. Sammonds, J., Jaspers, M. V., & Jones, E. E. (2016). Pre-infection processes of Botryosphaeriaceae spp. conidia: Adhesion to different substrata. Plant Pathology, 65, 1142–1152.CrossRefGoogle Scholar
  28. Shafi, A., Ridgway, H. J., Jaspers, M. V., & Jones, E. E. (2017). Conidial production by Botryosphaeriaceae species from grapevine shoot lesions in Marlborough vineyards. New Zealand Plant Protection, 70, 295–300.CrossRefGoogle Scholar
  29. Shafi, A., Ridgway, H. J., Jaspers, M. V., & Jones, E. E. (2019). Variability and influence of temperature and relative humidity on sporulation of Neofusicoccum species on grapevine shoots. European Journal of Plant Pathology In press.Google Scholar
  30. Shahriarinour, M., Mohd Noor, A. W., Ariff, A., & Mohamad, R. (2011). Screening, isolation and selection of cellulolytic fungi from oil palm empty fruit bunch fibre. Biotechnology, 10(1), 108–113.CrossRefGoogle Scholar
  31. Shaw, B. D., Carroll, G. C., & Hoch, H. C. (2006). Generality of the prerequisite of conidium attachment to a hydrophobic substratum as a signal for germination among Phyllosticta species. Mycologia, 98(2), 186–194.CrossRefGoogle Scholar
  32. Slippers, B., & Wingfield, M. J. (2007). Botryosphaeriaceae as endophytes and latent pathogens of woody plants: Diversity, ecology and impact. Fungal Biology Reviews, 21(2–3), 90–106.CrossRefGoogle Scholar
  33. Staples, R. C., & Hoch, H. C. (1997). Physical and chemical cues for spore germination and appressorium formation by fungal pathogens. In G. C. Carroll & P. Tudzynski (Eds.), Plant Relationships (pp. 27–40), The Mycota (A Comprehensive Treatise on Fungi as Experimental Systems for Basic and Applied Research) (Vol. 5). Berlin: Springer.Google Scholar
  34. Takikawa, Y., Xu, L., Kakutani, K., Nonomura, T., Sameshima, T., Matsuda, Y., & Toyoda, H. (2011). Conidia of the tomato powdery mildew Oidium neolycopersici initiate germ tubes at a predetermined site. Mycoscience, 52(3), 198–203.CrossRefGoogle Scholar
  35. ten Have, A., Tenberge, K., Benen, J.A.E., Tudzynski, P., Visser, J., & van Kan, J.A.L. (2002). The contribution of cell wall degrading enzymes to pathogenesis of fungal plant pathogens. In Agricultural Applications (11 ed., pp. 341–358): Springer Berlin Heidelberg. Retrieved from  https://doi.org/10.1007/978-3-662-03059-2_17.
  36. Tucker, S. L., & Talbot, N. J. (2001). Surface attachment and pre-penetration stage development by plant pathogenic fungi. Annual Review of Phytopathology, 39(1), 385–417.CrossRefGoogle Scholar
  37. Úrbez-Torres, J. R. (2011). The status of Botryosphaeriaceae species infecting grapevines (Vol. 50, pp. S5–S45). Phytopathologica Mediterranea.Google Scholar
  38. Úrbez-Torres, J. R., & Gubler, W. D. (2011). Susceptibility of grapevine pruning wounds to infection by Lasiodiplodia theobromae and Neofusicoccum parvum. Plant Pathology, 60(2), 261–270.CrossRefGoogle Scholar
  39. Úrbez-Torres, J. R., Battany, M., Bettiga, L. J., Gispert, C., McGourty, G., Roncoroni, J., & Gubler, W. D. (2010). Botryosphaeriaceae species spore-trapping studies in California vineyards. Plant Disease, 94(6), 717–724.CrossRefGoogle Scholar
  40. van Niekerk, J. M., Calitz, F., Halleen, F., & Fourie, P. H. (2010). Temporal spore dispersal patterns of grapevine trunk pathogens in South Africa. European Journal of Plant Pathology, 127(3), 375–390.CrossRefGoogle Scholar
  41. Warwar, V., & Dickman, M. B. (1996). Effects of calcium and calmodulin on spore germination and appressorium development in Colletotrichum trifolii. Applied and Environmental Microbiology, 62(1), 74–79.Google Scholar
  42. Wright, A. J., Carver, T. L. W., Thomas, B. J., Fenwick, N. I. D., Kunoh, H., & Nicholson, R. L. (2000). The rapid and accurate determination of germ tube emergence site by Blumeria graminis conidia. Physiological and Molecular Plant Pathology, 57(6), 281–301.CrossRefGoogle Scholar
  43. Wunderlich, N., Ash, G. J., Steel, C. C., Raman, H., & Savocchia, S. (2011). Association of Botryosphaeriaceae grapevine trunk disease fungi with the reproductive structures of Vitis vinifera. Vitis, 50(2), 89–96.Google Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2019

Authors and Affiliations

  1. 1.Department of Pest-management and Conservation, Faculty of Agriculture and Life SciencesLincoln UniversityCanterburyNew Zealand

Personalised recommendations