Screening of Chrysanthemum seticuspe accessions reveals different degrees of resistance to chrysanthemum stunt viroid

  • Yosuke MatsushitaEmail author
  • Msaaki Osaka


The chrysanthemum stunt viroid (CSVd) causes severe stunting and significant reduction in flower yield and quality of commercial chrysanthemum (Chrysanthemum morifolium). The pattern of inheritance and the detailed mechanism underlying CSVd resistance remains unclear. Chrysanthemum morifolium shows unstable and variable chromosome numbers that form a hexaploid complex with aneuploidy. To overcome the issue of complex hybridity and polyploidy, a diploid wild chrysanthemum, C. seticuspe f. boreale was used here as an alternative model to C. morifolium. We screened 20 C. seticuspe accessions for resistance to CSVd and identified one resistant accession “AET-19” showing resistance. Tissue print hybridization analysis showed that CSVd concentration decreased in the uppermost leaves of the AET-19 after the scions were cut from the infected rootstocks, suggesting the resistance seems to be ‘CSVd-disappearance type’. In situ hybridization experiments revealed that CSVd does not invade the shoot tip of AET-19 plants after graft-inoculation onto infected rootstocks. Taken together, the results highlight the usefulness of C. setiscupe as a model for analyzing the mechanism of CSVd resistance and its pattern of inheritance.


Chrysanthemum seticuspe CSVd Diploid Resistant Susceptible 



We are grateful to M. Nakano (Hiroshima University, Japan) for helpful comments and discussion. We thank NBRP Chrysanthemum ( for providing chrysanthemum accessions.

Compliance with ethical standards

Conflict of interest

There are no potential conflicts of interest, and this research did not involve human participants and/or animals.


  1. Asano, S., Matsushita, Y., Hirayama, Y., & Naka, T. (2015). Simultaneous detection of tomato spotted wilt virus, Dahlia mosaic virus and Chrysanthemum stunt viroid by multiplex RT-PCR in dahlias and their distribution in Japanese dahlias. Letters in Applied Microbiology, 61, 113–120.CrossRefGoogle Scholar
  2. Bouwen, I., & van Zaayen, A. (2004). Chrysanthemum stunt viroid. In A. Hadidi, J. Flores, W. Randles, & J. S. Semancik (Eds.), The Viroids (pp. 218–223). Melbourne: CSIRO.Google Scholar
  3. Cho, W. K., Jo, Y., Jo, K.-M., & Kim, K.-H. (2013). A current overview of two viroids that infect chrysanthemums: Chrysanthemum stunt viroid and Chrysanthemum chlorotic mottle viroid. Viruses, 5, 1099–1113.CrossRefGoogle Scholar
  4. Chung, B. N., & Pak, H. S. (2008). Seed transmission of Chrysanthemum stunt viroid in chrysanthemum (Dendranthema grandiflorum) in Korea. Plant Pathology Journal, 24, 31–35.CrossRefGoogle Scholar
  5. Di Serio, F., Martínez de Alba, A. E., Navarro, B., Gisel, A., & Flores, R. (2010). RNA-dependent RNA polymerase 6 delays accumulation and precludes meristem invasion of a viroid that replicates in the nucleus. Journal of Virology, 84, 2477–2489.CrossRefGoogle Scholar
  6. Di Serio, F., Li, S. F., Pallás, V., Owens, R. A., Randles, J. W., Sano, T., Verhoeven, J. T. T., Vidalakis, G., & Flores, R. (2017). Viroid taxonomy. In A. Hadidi, R. Flores, P. Palukaitis, & J. Randles (Eds.), Viroids and satellites (pp. 135–146). London: Academic Press.CrossRefGoogle Scholar
  7. Diener, T. O., & Lawson, R. H. (1973). Chrysanthemum stunt: A viroid disease. Virology, 51, 94–101.CrossRefGoogle Scholar
  8. Dimock, A.W. (1947). Chrysanthemum stunt. NY State Flower Growers 313 Bulletin, 26, 2.Google Scholar
  9. Ding, B., Kwon, M. O., Hammond, R., & Owens, R. (1997). Cell-to-cell movement of potato spindle tuber viroid. Plant Journal, 12, 931–936.CrossRefGoogle Scholar
  10. Doi, M., & Kato, K. (2004). Nucleotide sequence of Chrysanthemum stunt viroid (CSVd) occurred in Shizuoka prefecture and symptoms of chrysanthemum cultivar. Annual Report of The Kansai Plant Protection Society, 46, 11–14 In Japanese, with English abstract.CrossRefGoogle Scholar
  11. Flores, R., Gas, M. E. G., Molina-Serrano, D., Nohales, M. A., Carbonell, A., & Gago, S. (2009). Viroid replication: Rolling circles, enzymes and ribozymes. Viruses, 1, 317–334.CrossRefGoogle Scholar
  12. Higuchi, Y., Narumi, T., Oda, A., Nakano, Y., Sumitomo, K., Fukai, S., & Hisamatsu, T. (2013). The gated induction system of a systemic floral inhibitor, antiflorigen, determines obligate short-day flowering in chrysanthemums. Proceedings of the National Academy of Sciences, 110, 17137–17142.CrossRefGoogle Scholar
  13. Hollings, M., & Stone, O. M. (1973). Some properties of chrysanthemum stunt, a virus with the characteristics of an uncoated ribonucleic acid. Annals of Applied Biology, 74, 333–348.CrossRefGoogle Scholar
  14. Horst, R. K. (1977). Effects of chrysanthemum stunt, chlorotic mottle, aspermy and mosaic on flowering and rotting of chrysanthemums. Phytopathology, 67, 9–14.CrossRefGoogle Scholar
  15. Hosokawa, M. (2008). Leaf primordia-free shoot apical meristem culture: A new method for production of viroid-free plants. Journal of the Japanese Society for Horticultural Science, 77, 341–349.CrossRefGoogle Scholar
  16. Hosokawa, M., Matsushita, Y., Uchida, H., & Yazawa, S. (2005). Direct RT-PCR method for detecting two chrysanthemum viroids using minimal amounts of plant tissue. Journal of Virological Methods, 131, 28–33.CrossRefGoogle Scholar
  17. Hua, J. (2013). Modulation of plant immunity by light, circadian rhythm, and temperature. Current Opinion in Plant Biology, 16, 406–413.CrossRefGoogle Scholar
  18. Klie, M., Schie, S., Linde, M., & Debener, T. (2014). The type of ploidy of chrysanthemum is not black or white: A comparison of a molecular approach to published cytological methods. Frontiers in Plant Science, 5, 1–8.CrossRefGoogle Scholar
  19. Marais, A., Faure, C., Deogratias, J. M., & Candresse, T. (2011). First report of Chrysanthemum stunt viroid in various cultivars of Argyranthemum frutescens in France. Plant Disease, 5, 1196.CrossRefGoogle Scholar
  20. Matsushita, Y. (2013). Chrysanthemum stunt viroid. Japan Agricultural Research Quarterly, 47, 237–247.CrossRefGoogle Scholar
  21. Matsushita, Y., & Kumar, P. K. R. (2009). In vitro transcribed Chrysanthemum stunt viroid (CSVd) RNA is infectious to chrysanthemum and other plants. Phytopathology, 99, 58–66.CrossRefGoogle Scholar
  22. Matsushita, Y., & Shima, Y. (2015). Effect of low temperature on the distribution of Chrysanthemum stunt viroid in Chrysanthemum morifolium. Phytoparasitica, 43, 609–614.CrossRefGoogle Scholar
  23. Matsushita, Y., & Tsuda, S. (2014). Distribution of Potato spindle tuber viroid in reproductive organs of petunia during its developmental stages. Phytopathology, 104, 964–969.CrossRefGoogle Scholar
  24. Matsushita, Y., Tsukiboshi, T., Ito, & Chikuo, Y. (2007). Nucleotide sequences and distribution of Chrysanthemum stunt viroid in Japan. Journal of the Japanese Society for Horticultural Science, 76, 333–337.CrossRefGoogle Scholar
  25. Matsushita, Y., Usugi, T., & Tsuda, S. (2011). Distribution of tomato chlorotic dwarf viroid in floral organs of tomato. European Journal of Plant Pathology, 130, 441–447.CrossRefGoogle Scholar
  26. Matsushita, Y., Aoki, K. S., & Umitomo, K. (2012). Selection and inheritance of resistance to Chrysanthemum stunt viroid. Crop Protection, 35, 1–4.CrossRefGoogle Scholar
  27. Nabeshima, T., Hosokawa, M., Yano, S., Ohishi, K., & Doi, M. (2012). Screening of chrysanthemum cultivars with resistance to chrysanthemum stunt viroid. Journal of the Japanese Society for Horticultural Science, 81, 285–294.CrossRefGoogle Scholar
  28. Nabeshima, T., Hosokawa, M., Yano, S., Ohishi, K., & Doi, M. (2014). Evaluation of chrysanthemum stunt viroid (CSVd) infection in newly-expanded leaves from CSVd-inoculated shoot apical meristems as a method of screening for CSVd-resistant chrysanthemum cultivars. The Journal of Horticultural Science and Biotechnology, 89, 29–34.CrossRefGoogle Scholar
  29. Nabeshima, T., Doi, M., & Hosokawa, M. (2017). Comparative analysis of Chrysanthemum stunt viroid accumulation and movement in two chrysanthemum (Chrysanthemum morifolium) cultivars with differential susceptibility to the viroid infection. Frontiers in Plant Science, 8, 1940. Scholar
  30. Nakano, Y., Higuchi, Y., Sumitomo, K., & Hisamatsu, T. (2013). Flowering retardation by high temperature in chrysanthemums: Involvement of FLOWERING LOCUS T-like 3 gene repression. Journal of Experimental Botany, 64, 909–920.CrossRefGoogle Scholar
  31. Nakashima, A., Hosokawa, M., Maeda, S., & Yazawa, S. (2007). Natural infection of Chrysanthemum stunt viroid in dahlia plants. Journal of General Plant Pathology, 73, 225–227.CrossRefGoogle Scholar
  32. Nie, X. Z., Singh, R. P., & Bostan, H. (2005). Molecular cloning, secondary structure, and phylogeny of three pospiviroids from ornamental plants. Canadian Journal of Plant Pathology, 27, 592–602.CrossRefGoogle Scholar
  33. Oda, A., Narumi, T., Li, T., Kando, T., Higuchi, Y., Sumitomo, K., Fukai, S., & Hisamatsu, T. (2012). CsFTL3, a chrysanthemum FLOWERING LOCUS T-like gene, is a key regulator of photoperiodic flowering in chrysanthemums. Journal of Experimental Botany, 63, 1461–1477.CrossRefGoogle Scholar
  34. Omori, H., Hosokawa, M., Shiba, H., Shitsukawa, N., Murai, K., & Yazawa, S. (2009). Screening of chrysanthemum plants with strong resistance to Chrysanthemum stunt viroid. Journal of the Japanese Society for Horticultural Science, 78, 350–355.CrossRefGoogle Scholar
  35. Palukaitis, P. (2017). Chrysanthemum stunt viroid. In A. Hadidi, R. Flores, P. Palukaitis, & J. Randles (Eds.), Viroids and satellites (pp. 181–190). London: Academic Press.CrossRefGoogle Scholar
  36. Palukaitis, P., & Symons, R. H. (1980). Purification and characterization of the circular and linear forms of Chrysanthemum stunt viroid. Journal of General Virology, 46, 477–489.CrossRefGoogle Scholar
  37. Sainte-Marie, G. (1962). A paraffin embedding technique for studies employing immunofluorescence. Journal of Histochemistry & Cytochemistry, 10, 250–256.CrossRefGoogle Scholar
  38. Stark-Lorenzen, P., Guitton, M. C., Werner, R., & Mühlbach, H. P. (1997). Detection and tissue distribution of potato spindle tuber viroid in infected tomato plants by tissue print hybridization. Archives of Virology, 142, 1289–1296.CrossRefGoogle Scholar
  39. Teixeira da Silva, J. A., Shinoyama, H., Aida, R., Matsushita, Y., Raj, S. K., Chen, F. D., & Chen, F. (2013). Chrysanthemum biotechnology: Quo vadis? Critical Reviews in Plant Sciences, 32, 21–52.CrossRefGoogle Scholar
  40. Verhoeven, J. T. J., Arts, M. S. J., Owens, R. A., & Roenhurst, J. W. (1998). Natural infection of petunia by Chrysanthemum stunt viroid. European Journal of Plant Pathology, 104, 383–386.CrossRefGoogle Scholar
  41. Verhoeven, J. T. J., Jansen, C. C. C., & Roenhurst, J. W. (2006). First report of potato virus M and Chrysanthemum stunt viroid in Solanum jasminoides. Plant Disease, 90, 1359–1359.CrossRefGoogle Scholar
  42. Zhu, Y., Green, L., Woo, Y. M., Owens, R. A., & Ding, B. (2001). Cellular basis of potato spindle tuber viroid systemic movement. Virology, 279, 69–77.CrossRefGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2019

Authors and Affiliations

  1. 1.National Agriculture and Food Research OrganizationInstitute of Vegetable and Floriculture ScienceTsukubaJapan
  2. 2.Miyagi Prefectural Institute of Agriculture and HorticultureNatoriJapan

Personalised recommendations