Histopathology of infection and colonisation of Elsinoë ampelina on grapevine leaves

  • Zélia Valente Braga
  • Ricardo Feliciano dos Santos
  • Lilian AmorimEmail author
  • Beatriz Appezzato-da-GlóriaEmail author


Elsinoë ampelina, the causal agent of grapevine anthracnose, infects all aboveground succulent parts of the plant, causing serious yield losses. There are no histopathological reports on this pathogen interaction with grapevine tissues. This study aimed at understanding the infection and colonisation processes of E. ampelina on Vitis labrusca cv. Niagara Rosada leaves by light, transmission and scanning microscopy. From one to five germ tubes per conidia were formed during conidia germination, predominantly one or two. Cuticle degradation was observed on plant surface underneath germ tubes and appressorium-like structures were rare. Monilioid and branched hyphae were observed 48 h post inoculation. Direct penetration occurred only on the adaxial leaf surface due to high trichome density on the abaxial leaf surface and conidia trapped on trichomes were frequently observed. The colonisation process was similar in the leaf blade, veins and petiole with the formation of inter- and intracellular hyphae. Phenolic compounds accumulated in infected areas; however, they did not prevent the colonisation progress. Tissues of foliar blade were totally changed by cell collapse and conidiogenous cells were observed on the surface of necrotic lesions. Ascus-like structures were observed within deeply unstructured tissues of leaf veins and necrotic areas of the petiole.


Vitis labrusca Sphaceloma ampelinum Necrotic symptoms Direct penetration Grapevine black spot 



We would like to FAPESP for financial support (project n° 2013/24003-9), NAP-MEPA, ESALQ/USP for electron microscope facilities. This study was also financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.

Compliance with ethical standards

This manuscript is original and complies to the ethical rules applicable for this journal.

Conflict of interest

The authors do not present any actual or potential conflict of interests.

Supplementary material

10658_2019_1721_MOESM1_ESM.docx (929 kb)
ESM 1 (DOCX 929 kb)


  1. Agrios, G. N. (2005). Plant pathology (5th ed.). Burlington: Elsevier Academic Press.Google Scholar
  2. Amorim, L., Spósito, M. B., & Kuniyuki, H. (2016). Doenças da videira. In L. Amorim, J. A. M. Rezende, A. Bergamin Filho, & L. E. A. Camargo (Eds.), Manual de Fitopatologia: Doenças das Plantas Cultivadas (pp. 745–758). São Paulo: Editora Agronômica Ceres.Google Scholar
  3. Barros, L. B., Biasi, L. A., Carisse, O., & De Mio, L. L. M. (2015). Incidence of grape anthracnose on different Vitis labrusca and hybrid cultivars and rootstocks combination under humid subtropical climate. Australasian Plant Pathology, 44, 397–403.CrossRefGoogle Scholar
  4. Brook, P. J. (1973). Epidemiology of grapevine anthracnose, caused by Elsinoe ampelina. New Zealand Journal of Agricultural Research, 16, 333–342.CrossRefGoogle Scholar
  5. Camargo, U. A., Tonietto, J., & Hoffmann, A. (2011). Progressos na viticultura brasileira. Revista Brasileira de Fruticultura, 33, 144–149.CrossRefGoogle Scholar
  6. Carisse, O., & Lefebvre, A. (2011). A model to estimate the amount of primary inoculum of Elsinoë ampelina. Plant Disease, 95, 1167–1171.CrossRefGoogle Scholar
  7. Carisse, O., & Morissette-Thomas, V. (2013). Epidemiology of grape anthracnose: Factors associated with defoliation of grape leaves infected by Elsinoë ampelina. Plant Disease, 97, 222–230.CrossRefGoogle Scholar
  8. EPPO (European and Mediterranean Plant Protection Organization) (2016). Elsinoë ampelina. Accessed 5 Jun 2018.
  9. Fan, X. L., Barreto, R. W., Groenewald, J. Z., Bezerra, J. D. P., Pereira, O. L., Cheewangkoon, R., & Crous, P. W. (2017). Phylogeny and taxonomy of the scab and spot anthracnose fungus Elsinoë (Myriangiales, Dothideomycetes). Studies in Mycology, 87, 1–41.CrossRefGoogle Scholar
  10. Feder, N. E. D., & O'Brien, T. P. (1968). Plant microtechnique: Some principles and new methods. American Journal of Botany, 55, 123–142.CrossRefGoogle Scholar
  11. Feng, J., Wang, F., Hughes, G. R., Kaminskyj, S., & Wei, Y. (2011). An important role for secreted esterase in disease establishment of the wheat powdery mildew fungus Blumeria graminis f. sp. tritici. Canadian Journal of Microbiology, 57, 211–216.Google Scholar
  12. Gabel, A. W., & Tiffany, L. H. (1987). Host-parasite relations and development of Elsinoë panici. Mycologia, 79, 737–744.Google Scholar
  13. Gregory, M., & Baas, P. (1989). A survey of mucilage cells in vegetative organs of the dicotyledons. Israel Journal of Botany, 38, 125–174.Google Scholar
  14. Horridge, G., & Tamm, S. (1969). Critical point drying for scanning electron microscopic study of ciliary motion. Science, 163, 817–818.CrossRefGoogle Scholar
  15. Hughes, J., & McCully, M. E. (1975). The use of an optical brightener in the study of plant structure. Stain Technology, 50, 319–329.CrossRefGoogle Scholar
  16. IBGE (Instituto Brasileiro de Geografia e Estatística) (2019). Levantamento sistemático da produção agrícola. Accessed 20 Feb 2019.
  17. Karnovsky, J. M. (1965). A formaldehyde-glutaraldehyde fixative of high osmolality for use in electron microscopy. Journal of Cell Biology, 27, 137–138.Google Scholar
  18. Kim, K. W., Hyun, J. W., & Park, E. W. (2004). Cytology of cork layer formation of citrus and limited growth of Elsinoe fawcettii in scab lesions. European Journal of Plant Pathology, 110, 129–138.CrossRefGoogle Scholar
  19. Kono, A., Sato, A., Ban, Y., & Mitani, N. (2013). Resistance of Vitis germplasm to Elsinoë ampelina (de Bary) Shear evaluated by lesion number and diameter. HortScience, 48, 1433–1439.CrossRefGoogle Scholar
  20. Kortekamp, A., & Zyprian, E. (1999). Leaf hairs as a basic protective barrier against downy mildew of grape. Journal of Phytopathology, 147, 453–459.CrossRefGoogle Scholar
  21. Kubicek, C. P., Starr, T. L., & Glass, N. L. (2014). Plant cell wall–degrading enzymes and their secretion in plant-pathogenic fungi. Annual Review of Phytopathology, 52, 427–451.CrossRefGoogle Scholar
  22. Li, Z., Dang, H., Yuan, X., He, J., Hu, Z., & Wang, X. (2018). Morphological characterization and optimization of conditions for conidial production of Elsinoë ampelina, the causal organism of grapevine anthracnose. Journal of Phytopathology, 166, 420–428.CrossRefGoogle Scholar
  23. Maia, J. D. G., Camargo, U. A., Tonietto, J., Zanus, M. C., Quecini, V., Ferreira, M. E., & Ritschel, P. (2015). Grapevine breeding programs in Brazil. In G. A. Reynolds (Ed.), Grapevine breeding programs for the wine industry (pp. 247–271). Cambridge: Elsevier.CrossRefGoogle Scholar
  24. Marques, J. P. R., Spósito, M. B., Mello, A. F. S., Amorim, L., Mondin, M., & Appezzato-da-Glória, B. (2012). Histopathology of black spot symptoms in sweet oranges. European Journal of Plant Pathology, 133, 439–448.CrossRefGoogle Scholar
  25. Marques, J. P. R., Amorim, L., Spósito, M. B., & Appezzato-da-Glória, B. (2013a). Histopathology of postbloom fruit drop caused by Colletotrichum acutatum in citrus flowers. European Journal of Plant Pathology, 135, 783–790.CrossRefGoogle Scholar
  26. Marques, J. P. R., Soares, M. K. M., & Appezzato-Da-Gloria, B. (2013b). New staining technique for fungal-infected plant tissues. Turkish Journal of Botany, 37, 784–787.Google Scholar
  27. Mason, D. L., & Backus, M. P. (1969). Host-parasite relations in spot anthracnose of Desmodium. Mycologia, 61, 1124–1141.CrossRefGoogle Scholar
  28. Murria, S., Kaur, N., Arora, N., & Mahal, A. K. (2018). Field reaction and metabolic alterations in grape (Vitis vinifera L.) varieties infested with anthracnose. Scientia Horticulturae, 235, 286–293.CrossRefGoogle Scholar
  29. Pascholati, S. F., & Dalio, R. J. D. (2018). Fisiologia do parasitismo: como os patógenos atacam as plantas. In L. Amorim, J. A. M. Rezende, & A. Bergamin Filho (Eds.), Manual de Fitopatologia: Princípios e Conceitos (pp. 389–421). São Paulo: Editora Agronômica Ceres.Google Scholar
  30. Pascholati, S. F., Deising, H., Leite, B., Anderson, D., & Nicholson, R. L. (1993). Cutinase and non-specific esterase activities in the conidial mucilage of Colletotrichum graminicola. Physiological Molecular Plant Pathology, 42, 37–51.CrossRefGoogle Scholar
  31. Paudyal, D. P., & Hyun, J. W. (2015). Physical changes in Satsuma mandarin leaf after infection of Elsinoë fawcettii causing citrus scab disease. The Plant Pathology Journal, 31, 421–427.CrossRefGoogle Scholar
  32. Paudyal, D. P., Hyun, J. W., & Hwang, R. Y. (2017). Infection and symptom development by citrus scab pathogen Elsinoë fawcettii on leaves of Satsuma mandarin. European Journal of Plant Pathology, 148, 807–816.Google Scholar
  33. Reynolds, E. S. (1963). The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. The Journal of Cell Biology, 17, 208–212.CrossRefGoogle Scholar
  34. Sakai, W. S. (1973). Simple method for differential staining of paraffin embedded plant material using toluidine blue O. Stain Technology, 48, 247–249.CrossRefGoogle Scholar
  35. Santos, R. F., Spósito, M. B., Ayres, M. R., & Sosnowski, M. R. (2018a). Phylogeny, morphology and pathogenicity of Elsinoë ampelina, the causal agent of grapevine anthracnose in Brazil and Australia. Journal of Phytopathology, 166, 187–198.CrossRefGoogle Scholar
  36. Santos, R. F., Ciampi-Guillardi, M., Amorim, L., Massola, N. S., & Spósito, M. B. (2018b). Aetiology of anthracnose on grapevine shoots in Brazil. Plant Pathology, 67, 692–706.CrossRefGoogle Scholar
  37. Santos, R. F., Spósito, M. B., Ayres, M. R., & Sosnowski, M. R. (2018c). In vitro production of conidia of Elsinoë ampelina, the causal fungus of grapevine anthracnose. European Journal of Plant Pathology,
  38. Shear, C. L. (1929). The life-history of Sphaceloma ampelinmn de Bary. Phytopathology, 19, 673–679.Google Scholar
  39. Thind, T. S. (2015). Anthracnose. In W. Wilcox, W. Gubler, & J. Uyemoto (Eds.), Compendium of grape diseases, disorders, and pests (pp. 17–19). St Paul: APS Press.Google Scholar
  40. Thind, T. S., Arora, J. K., Mohan, C., & Raj, P. (2004). Epidemiology of powdery mildew, downy mildew and anthracnose diseases of grapevine. In S. A. M. H. Naqvi (Ed.), Diseases of fruits and vegetables (pp. 621–638). Dordrecht: Springer.CrossRefGoogle Scholar
  41. Williamson, B., & McNicol, R. J. (1989). The histology of lesion development in raspberry canes infected by Elsinoe veneta. Annals of Applied Biology, 114, 35–44.CrossRefGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2019

Authors and Affiliations

  • Zélia Valente Braga
    • 1
  • Ricardo Feliciano dos Santos
    • 2
  • Lilian Amorim
    • 2
    Email author
  • Beatriz Appezzato-da-Glória
    • 1
    Email author
  1. 1.Departamento de Ciências Biológicas, Escola Superior de Agricultura “Luiz de Queiroz”Universidade de São PauloPiracicabaBrazil
  2. 2.Departamento de Fitopatologia e Nematologia, Escola Superior de Agricultura “Luiz de Queiroz”Universidade de São PauloPiracicabaBrazil

Personalised recommendations