Verticillium dahliae and Verticillium nonalfalfae occurrence and abundance in several agricultural fields from Nova Scotia, Canada, assessed by real-time quantitative PCR

  • Tudor Borza
  • Anjana Govindarajan
  • Jancy Stephen
  • Kim Best
  • Kris Pruski
  • Gefu Wang-PruskiEmail author


Verticillium dahliae and Verticillium nonalfalfae are soil-borne fungal pathogens with a ubiquitous geographical distribution affecting a wide range of plants of economic importance. Though Verticillium wilt represents a major problem for crop production in Nova Scotia, Canada, little is known about the distribution of these pathogens in the major agricultural areas from this province. To address the paucity of available data, a molecular-based survey of these Verticillium pathogens, documenting their distribution, incidence, and in-sample abundance, was carried out for two successive years, in several representative agricultural locations in this province. Soil and plant samples (potato and strawberry) were analyzed using real-time quantitative PCR targeting the Intergenic Spacer ribosomal DNA locus of the Verticillium pathogens. Molecular data revealed that V. dahliae has a wider distribution and a higher incidence than V. nonalfalfae (former V. albo-atrum group 1) in the tested fields while V. albo-atrum sensu stricto (former V. albo-atrum group 2) was not identified in any of the samples collected from this region. Also, V. dahliae was found to have a higher incidence in fields used to grow potatoes as compared to fields used to grow strawberries, irrespective of the rotating crops.


Soil borne pathogens Verticillium dahliae Verticillium nonalfalfae Verticillium albo-atrum Pathogen quantification by real-time quantitative PCR 



This work was supported by the Nova Scotia Research Acceleration Fund RA14-0036. We thank Dr. Harold W. (Bud) Platt (Agriculture and Agri-Food Canada, Charlottetown, PEI) for providing the strains V. dahliae 04-41 and V. nonalfalfae 1856, that were used to generate the standard curves for the qPCR method.

Compliance with ethical standards

Conflicts of interest

This work was not submitted for publication to another journal. All authors listed have contributed to the work, have read the manuscript and declare that there are no potential conflicts of interest. This work was supported by the Nova Scotia Research Acceleration Fund RA14–0036.

Supplementary material

10658_2019_1712_MOESM1_ESM.docx (100 kb)
ESM 1 (DOCX 100 kb)


  1. Agrios, G. N. (2005). Plant pathology (5th ed.). Cambridge: Elsevier Academic Press.Google Scholar
  2. Alkher, H., El Hadrami, A., Adam, L. R., & Daayf, F. (2009). Cross-pathogenicity of Verticillium dahliae between potato and sunflower. European Journal of Plant Pathology, 124, 505–519.CrossRefGoogle Scholar
  3. Bilodeau, G. J., Koike, S. T., Uribe, P., & Martin, F. N. (2012). Development of an assay for rapid detection and quantification of Verticillium dahliae in soil. Phytopathology, 102, 331–343.CrossRefGoogle Scholar
  4. Borza, T., Govindarajan, A., Gao, X., Peters, R., Ganga, Z., Rand, J., Beaton, B., Best, K., Pruski, K., & Wang-Pruski, G. (2016). Maritimes Regional Meeting, 2015/Réunion régionale des Maritimes, 2015. Detection and quantification of Verticillium dahliae and Verticillium albo-atrum in potato and strawberry plants. Canadian Journal of Plant Pathology, 38, 141–147.CrossRefGoogle Scholar
  5. Borza, T., Beaton, B., Govindarajan, A., Gao, X., Liu, Y., Ganga, Z., & Wang-Pruski, G. (2018). Incidence and abundance of Verticillium dahliae in soil from various agricultural fields in Prince Edward Island, Canada. European Journal of Plant Pathology, 151, 825–830.CrossRefGoogle Scholar
  6. Celetti, M. J., & Platt, H. W. (1987). A new cause for an old disease: Verticillium dahliae found on Prince Edward Island. American Potato Journal, 64, 209–212.CrossRefGoogle Scholar
  7. El-Bebany, A. F., Alkher, H., Adam, L. R., & Daayf, F. (2013). Vegetative compatibility of Verticillium dahliae isolates from potato and sunflower using nitrate non-utilizing (nit) mutants and PCR-based approaches. Canandian Journal of Plant Pathology, 35, 1–9.CrossRefGoogle Scholar
  8. Goud, J. C., & Termorshuizen, A. J. (2003). Quality of methods to quantify microsclerotia of Verticillium dahliae in soil. European Journal of Plant Pathology, 109, 523–534.CrossRefGoogle Scholar
  9. Gourley, C. O., & MacNab, A. A. (1964). Verticillium dahliae and Gliocladium roseum isolation from strawberries in Nova Scotia. Canadian Journal of Plant Science, 44, 544–549.CrossRefGoogle Scholar
  10. Inderbitzin, P., & Subbarao, K. V. (2014). Verticillium systematics and evolution: how confusion impedes Verticillium wilt management and how to resolve it. Phytopathology, 104, 564–574.CrossRefGoogle Scholar
  11. Inderbitzin, P., Bostock, R. M., Davis, R. M., Usami, T., Platt, H. W., & Subbarao, K. V. (2011). Phylogenetics and taxonomy of the fungal vascular wilt pathogen Verticillium, with the descriptions of five new species. PLoS One, 6, e28341.CrossRefGoogle Scholar
  12. Inderbitzin, P., Davis, R. M., Bostock, R. M., & Subbarao, K. V. (2013). Identification and differentiation of species and lineages by simplex and multiplex PCR assays. PLoS One, 8, e65990.CrossRefGoogle Scholar
  13. Jakše, J., Jelen, V., Radišek, S., de Jonge, R., Mandelc, S., Majer, A., Curk, T., Zupan, B., Thomma, B. P. H. J., & Javornik, B. (2018). Genome sequence of a lethal strain of xylem-invading Verticillium nonalfalfae. Genome Announcements, 6, e01458–e01417.Google Scholar
  14. Kasson, M. T., Short, D. P., O'Neal, E. S., Subbarao, K. V., & Davis, D. D. (2014). Comparative pathogenicity, biocontrol efficacy, and multilocus sequence typing of Verticillium nonalfalfae from the invasive Ailanthus altissima and other hosts. Phytopathology, 104, 282–292.CrossRefGoogle Scholar
  15. Kasson, M. T., Kasson, L. R., Wickert, K. L., Davis, D. D., & Stajich, J. E. (2019). Genome sequence of a lethal vascular wilt fungus, Verticillium nonalfalfae, a biological control used against the invasive Ailanthus altissima. Microbiology Resource Announcements, 8, e01619-01618.CrossRefGoogle Scholar
  16. Kimpinski, J., Platt, H. W., Perley, S., & Walsh, J. R. (1998). Pratylenchus spp. and Verticillium spp. in New Brunswick potato fields. American Journal of Potato Research, 75, 87–91.CrossRefGoogle Scholar
  17. Klosterman, S. J., Subbarao, K. V., Kang, S., Veronese, P., Gold, S. E., Thomma, B. P., Chen, Z., Henrissat, B., Lee, Y. H., Park, J., Garcia-Pedrajas, M. D., Barbara, D. J., Anchieta, A., de Jonge, R., Santhanam, P., Maruthachalam, K., Atallah, Z., Amyotte, S. G., Paz, Z., Inderbitzin, P., Hayes, R. J., Heiman, D. I., Young, S., Zeng, Q., Engels, R., Galagan, J., Cuomo, C. A., Dobinson, K. F., & Ma, L. J. (2011). Comparative genomics yields insights into niche adaptation of plant vascular wilt pathogens. PLoS Pathogens, 7, e1002137.CrossRefGoogle Scholar
  18. Lopez-Escudero, F. J., & Blanco-Lopez, M. A. (2005). Isolation and morphological characterization of microsclerotia of Verticillium dahliae isolate from soil. Biotechnology, 4, 296–304.CrossRefGoogle Scholar
  19. Mahuku, G. S., & Platt, H. W. (2002a). Molecular evidence that Verticillium albo-atrum Grp 2 isolates are distinct from V. albo-atrum Grp 1 and V. tricorpus. Molecular Plant Pathology, 3, 71–79.CrossRefGoogle Scholar
  20. Mahuku, G. S., & Platt, H. W. B. (2002b). Quantifying Verticillium dahliae in soils collected from potato fields using a competitive PCR assay. American Journal of Potato Research, 79, 107–117.CrossRefGoogle Scholar
  21. Mahuku, G. S., Platt, H. W. B., & Maxwell, P. (1999). Comparison of polymerase chain reaction based methods with plating on media to detect and identify Verticillium wilt pathogens of potato. Canadian Journal of Plant Pathology, 21, 125–131.CrossRefGoogle Scholar
  22. Minister of Agriculture for Canada (1953). Report of the Minister of Agriculture for Canada for the year ended March 31, 1953. In: p. 143. Ottawa: Report of the Minister of Agriculture for Canada.Google Scholar
  23. Nicot, P. C., & Rouse, D. I. (1987). Relationship between soil inoculum density of Verticillium dahliae and systemic colonization of potato stems in commercial fields over time. Phytopathology, 77, 1346–1355.CrossRefGoogle Scholar
  24. Pegg, G. F., & Brady, B. L. (2002). Verticillium wilts. New York: CABI.CrossRefGoogle Scholar
  25. Robb, J., Moukhamedov, R., Hu, X., Platt, H., & Nazar, R. (1993). Putative subgroups of Verticillium albo-atrum distinguishable by PCR-based assays. Physiological and Molecular Plant Pathology, 43, 423–436.CrossRefGoogle Scholar
  26. Rowe, R. C., Davis, J. R., Powelson, M. L., & Rouse, D. I. (1987). Potato early dying: causal agents and management strategies. Plant Disease, 71, 482–489.CrossRefGoogle Scholar
  27. Typas, M. A., & Heale, J. B. (1980). DNA content of germinating spores, individual hyphal cells and resting structure cells of Verticillium spp. measured by microdensitometry. Microbiology, 121, 231–242.CrossRefGoogle Scholar
  28. Wang-Pruski, G., Borza, T., Govindarajan, A., Gao, X., Beaton, B., Best, K., Ganga, Z., & Pruski, K. (2016). Maritimes Regional Meeting, 2015/Réunion régionale des Maritimes, 2015. Detection and quantification of Verticillium dahliae in soil of potato and strawberry fields and its distribution in PEI and Nova Scotia. Canadian Journal of Plant Pathology, 38, 141–147.CrossRefGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2019

Authors and Affiliations

  • Tudor Borza
    • 1
  • Anjana Govindarajan
    • 1
  • Jancy Stephen
    • 1
  • Kim Best
    • 2
  • Kris Pruski
    • 1
  • Gefu Wang-Pruski
    • 1
    Email author
  1. 1.Department of Plant, Food, and Environmental Sciences, Faculty of AgricultureDalhousie UniversityTruroCanada
  2. 2.Prospect Agri-ServicesCambridge StationCanada

Personalised recommendations