Soil solarization and amelioration with calcium chloride or Bacillus licheniformis - an effective integrated strategy for the management of bacterial wilt of ginger incited by Ralstonia pseudsolanacearum

  • R. Suseela BhaiEmail author
  • T. P. Prameela
  • K. Vincy
  • C. N. Biju
  • V. Srinivasan
  • K. Nirmal Babu


Bacterial wilt (BW) incited by Ralstonia pseudosolanacearum (Rps), is one among the most economically important and devastating disease prevalent in all the ginger growing countries. Several strategies encompassing cultural, physical and chemical means have been reported to manage bacterial wilt but with limited success. In the present study, a technology integrating physical (soil solarization), chemical (soil amelioration with calcium chloride) and biological (ginger apoplastic bacterium - Bacillus licheniformis) methods has been developed to manage BW efficiently, economically and eco-friendly. The results indicated that, CaCl2 (2 to 4%) is inhibitory to R. pseudosolanacearum under in vitro conditions. In planta evaluation under challenge inoculation showed 71%, 98% and 100% reduction in BW with B. licheniformis, 3% and 4% CaCl2, respectively. Subsequent field evaluation involving soil solarization followed by soil amelioration with CaCl2 or with B. licheniformis resulted in significant reduction in the population of R. pseudosolanacearum from 108 to 103. Further field evaluation in farmer’s plot in BW endemic regions also resulted in 100% disease suppression adopting the technology. The results emanated from the present study indicated that the technology developed which includes soil solarization along with soil amelioration with either CaCl2 3% or B. licheniformis would serve as a viable and effective integrated strategy for the management of BW in ginger.


Bacterial wilt Calcium chloride Ginger Ralstonia pseudosolanacearum Disease management Spices Zingiber officinale 



The authors are grateful to The Director, ICAR-Indian Institute of Spices research, Kozhikode for facilitating the research, Indian Council of Agricultural Research, New Delhi for funding through Phytofura, the outreach programme and Mr. K. Jayarajan for statistical analysis.

Compliance with ethical standards

Ethical statement

This research article is not submitted elsewhere for publication and this manuscript complies to the Ethical Rules applicable for this journal.

Conflict of interest

None of the authors declare a conflict of interest, with all authors consenting to publication.

Human and animal studies

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. Aravind, R., Kumar, A., & Eapen, S. J. (2012). Pre-plant bacterization: A strategy for delivery of beneficial endophytic bacteria and production of disease-free plantlets of black pepper (Piper nigrum L.). Archives of Phytopathology and Plant Protection, 45(9), 1115–1126.CrossRefGoogle Scholar
  2. Baptista, M. J., Lopes, C. A., de Souza, R. B., & Furumoto, O. (2006). Effect of soil solarization and biofumigation during autumn on BW incidence and potato yield. Horticultura Brasileira, 24, 99–102.CrossRefGoogle Scholar
  3. Baptista, M. J., de Souza, R. B., Pereira, W., Lopes, C. A., & Carrijo, O. A. (2007). Effect of soil solarization and biofumigation on tomato BW incidence. Horticultura Brasileira, 24, 161–165.CrossRefGoogle Scholar
  4. Bateman, D. F., & Lumsden, R. D. (1965). Relation of calcium content and nature of pectic substances in bean hypocotyls of different ages to susceptibility to an isolate of Rhizoctonia solani. Phytopathology, 55, 734–738.Google Scholar
  5. Benson, J. H., Geary, B., Miller, J. S., Jolley, V. D., Hopkins, B. G., & Stevens, M. R. (2009). Phytophthora erythroseptica (pink rot) development in russet Norkotah potato grown in buffered hydroponic solutions I. Calcium nutrition effects. American Journal of Potato Research, 86(6), 466–471.CrossRefGoogle Scholar
  6. Bhai, R. S., Anandaraj, M., & Srinivasan, V. (2009). Validation of farmer’s practice of using sodium chloride for containing foot rot disease of black pepper (Piper nigrum L.). Indian Journal of Agricultural Sciences, 79(9), 57–61.Google Scholar
  7. Biggs, A. R. (1999). Effects of calcium salts on apple bitter rot caused by two Colletotrichum spp. Plant Disease, 83, 1001–1005.CrossRefGoogle Scholar
  8. Biggs, A. R., Ingle, M., & Solihati, W. D. (1993). Control of Alternaria infection of fruit of apple cultivar Nittany with calcium chloride and fungicides. Plant Disease, 77, 976–980.CrossRefGoogle Scholar
  9. Casida, L., Klein, D., & Santoro, T. (1964). Soil dehydrogenase activity. Soil Science, 98, 371–376.Google Scholar
  10. Ciampi-Panno Fernandez, C., Bustamante, P., Andrade, N., Ojeda, S., & Conteras, A. (1989). Biological control of BW of potatoes caused by Pseudomonas solanacearum. American Potato Journal, 66, 315–332.CrossRefGoogle Scholar
  11. Conway, W. S., Sams, C. E., McGuire, R. G., & Kelman, A. (1992). Calcium treatment of apples and potatoes to reduce postharvest decay. Plant Disease, 76(4), 329–334.CrossRefGoogle Scholar
  12. Conway, W. S., Gross, K. C., Boyer, C. D., & Sams, C. E. (1988). Inhibition of Penicillium expansumpolygalacturonase activity by increased applecell wall calcium. Phytopathology, 78(8), 1052–1055.CrossRefGoogle Scholar
  13. Dannon, E. A., & Wydra, K. (2004). Interaction between silicon amendment, BW development and phenotype of Ralstonia solanacearum in tomato genotypes. Physiological and Molecular Plant Pathology, 64, 233–243.CrossRefGoogle Scholar
  14. de P Araujo, J. S., Rodrigues, R., de L. D. Ribeiro, R., Gonsalves, K. S., Polidoro, J. C., (2004). Bacteriocin production by Brazilian isolates of Ralstonia solanacearum in vitro. ISHS. Acta Horticulturae International Symposium on Tomato Diseases. Brazil.
  15. Denny, T. P. (2000). Ralstonia solanacearum—A plant pathogen in touch with its host. Trends in Microbiology, 8(11), 486–489.CrossRefGoogle Scholar
  16. Dinesh, S., Yadav, D. K., Sinha, S., & Singh, H. (2012). Effect of safe chemicals and bleaching powder on BW incidence in tomato caused by Ralstonia solanacearum race 1 bv. 3. Annals of Plant Protection Sciences, 20(2), 426–429.Google Scholar
  17. Dinesh, R., Anandaraj, M., Kumar, A., Bini, Y. K., & Aravind, R. (2015). Isolation, characterization, and evaluation of multi-trait plant growth promoting rhizobacteria for their growth promoting and disease suppressing effects on ginger. Microbiological Research, 173, 34–43.CrossRefGoogle Scholar
  18. Dittapongpitch, V., & Surat, S. (2003). Detection of Ralstonia solanacearum in soil and weeds from commercial tomato fields using immunocapture and the polymerase chain reaction. Journal of Phytopathology, 151(4), 239–246.CrossRefGoogle Scholar
  19. Elphinstone, J. G. (2005). The current BW situation: A global overview. In C. Allen, P. Prior, & A. C. Hayward (Eds.), BW disease and the Ralstonia solanacearum species complex (pp. 9–28). St. Paul: American Phytopathological Society Press.Google Scholar
  20. Forster, R. L., & Echandi, E. (1975). Influence of calcium nutrition on bacterial canker of resistant and susceptible Lycopersicon spp. Phytopathology, 65, 84–85.CrossRefGoogle Scholar
  21. Fortnum, B. A., Martin, S. B., (1998). Disease Management Strategies for Control of BW of Tobacco in the South-eastern USA P. Prior et al. (eds.), BW Disease© Springer-Verlag Berlin Heidelberg.Google Scholar
  22. Genin, S., & Boucher, C. (2002). Ralstonia solanacearum: Secrets of a major pathogen unveiled by analysis of its genome. Molecular Plant Pathology, 3(3), 111–118.CrossRefGoogle Scholar
  23. Ginger Extension Pamphlet (2015) (Eds. Rajeev P and Ljio ) ICAR-Indian Institute of Spices Research, Kozhikode, Kerala, 673 012.Google Scholar
  24. Grey, B. E., & Steck, T. R. (2001). The viable but nonculturable state of Ralstonia solanacearum may be involved in long term survival and plant infection. Applied and Environmental Microbiology, 67(9), 3866–3872.CrossRefGoogle Scholar
  25. Hacisalihoglu, G., Ji, P. S., Longo, L. M., Olson, S., & Momol, T. M. (2007). BW induced changes in nutrient distribution and biomass and the effect of acibenzolar-S-methyl on BW in tomato. Crop Protection, 26, 978–982.CrossRefGoogle Scholar
  26. Hayward, A. C., (1994). “The hosts of Pseudomonas solanacearum,” in BW: The Disease and its Causative Agent, Pseudomonas solanacearum eds Hayward A. C., Hartman G. L., editors. (Wallingford: CAB International pp. 9–24.Google Scholar
  27. Hepler, P. K. (2005). Calcium: A central regulator of plant growth and development. The Plant Cell Online, 17(8), 2142–2155.CrossRefGoogle Scholar
  28. Heyman, F., Lindahl, B., Persson, L., Wikström, M., & Stenlid, J. (2007). Calcium concentrations of soil affect suppressiveness against Aphanomyces root rot of pea. Soil Biology and Biochemistry, 39(9), 2222–2229.CrossRefGoogle Scholar
  29. Hong, J. C., Momol, M. T., Ji, P., & Jones, J. (2011). Management of BW in tomatoes with thymol and acibenzolar-S-methyl. Crop Protection, 30(10), 1340–1345.CrossRefGoogle Scholar
  30. Ji, P., Momol, M. T., Olson, S. M., Pradhanang, P. M., & Jones, J. B. (2005). Evaluation of thymol as biofumigant for control of BW of tomato under field conditions. Plant Disease, 89, 497–500.CrossRefGoogle Scholar
  31. Jiang, J. F., Li, J. G., & Dong, Y. H. (2013). Effect of calcium nutrition on resistance of tomato against BW induced by Ralstonia solanacearum. European Journal of Plant Pathology, 136, 547–555.CrossRefGoogle Scholar
  32. Kai, H., Yang, S.-Y., Li, H., Wang, H., & Li, Z.-L. (2014). Effects of calcium carbonate on the survival of Ralstonia solanacearum in soil and control of tobacco BW. Journal of Plant Pathology, 140, 665–675.CrossRefGoogle Scholar
  33. Kelman, A. (1954). The relationship of pathogenicity of Pseudomonas solanacearum to colony appearance in a tetrazolium medium. Phytopathology, 44(12), 693–695.Google Scholar
  34. Kifelew, H., Kassa, B., Sadessa, K., & Hunduma, T. (2015). Prevalence of bacterial wilt of Ginger (Zingiber Officinale) caused by Ralstonia solanacearum (Smith) in Ethiopia. International Journal of Research Studies in Agricultural Sciences, 1(6), 14–22.Google Scholar
  35. Kongkiattikajorn, J., Thepa, S., (2007). Increased tomato yields by heat treatment for controlling Ralstonia solanacearum, in soil. Proc. of the 45th Kasetsart University Annual conference, Kasetsart, p. 450–457.Google Scholar
  36. Lemaga, B., Kakuhenzine, R., Kassa, B., Ewell, P. T., & Priou, S. (2005). Integrated control of potato BW in eastern Africa: The experience of African highlands initiative. In C. Allen, P. Prior, & A. C. Hayward (Eds.), BW disease and the Ralstonia solanacearum species complex (pp. 145–158). St. Paul: American Phytopathological Society Press.Google Scholar
  37. Li, J. G., & Dong, Y. H. (2013). Effect of a rock dust amendment on disease severity of tomato BW. Antonie Van Leeuwenhoek, 103, 11–22.CrossRefGoogle Scholar
  38. Liu, Y., Shi, J., Feng, Y., Yang, X., Li, X., & Shen, Q. (2013). Tobacco BW can be biologically controlled by the application of antagonistic strains in combination with organic fertilizer. Biology and Fertility of Soils, 49(4), 447–464.CrossRefGoogle Scholar
  39. Mathew, J., Abraham, K., Indrasenan, G., & Marykutty, S. (1979). A new record of bacterial wilt of ginger infected by Pseudomonas solanacearum E.F. Smith from India. Current Science, 48, 213–214.Google Scholar
  40. Messiha, N. A. S., van Diepeningen, A. D., Farag, N. S., Abdallah, S. A., Janse, J. D., & van Bruggen, A. H. C. (2007). Stenotrophomonas maltophilia: A new potential biocontrol agent of Ralstonia solanacearum, causal agent of potato brown rot. European Journal of Plant Pathology, 118, 211–225.CrossRefGoogle Scholar
  41. Michel, V. V., & Mew, T. W. (1998). Effect of a soil amendment on the survival of Ralstonia solanacearum in different soils. Phytopathology, 88(4), 300–305.CrossRefGoogle Scholar
  42. Michel, V. V., Wang, J. F., Midmore, D. J., & Hartman, G. L. (1997). Effects of intercropping and soil amendment with urea and calcium oxide on the incidence of BW of tomato and survival of soil-borne Pseudomonas solanacearum in Taiwan. Plant Pathology, 46(4), 600–610.CrossRefGoogle Scholar
  43. Nehal, S. E.-M., & Mokhtar, M. A.-K. (2009). Salts application for suppressing potato early blight disease. Journal of Plant Protection Research, 49(4), 353–361.CrossRefGoogle Scholar
  44. Prameela, T. P., (2016). Diversity and biocontrol potential of apoplastic microbes from ginger, studies on biovar specific diagnostics for Ralstonia solanacearum Yabuuchi (smith) infecting ginger (Zingiber officinale Rosc.) and evaluation of apoplastic microbes for biocontrol. Thesis- Mangalore University pp.Google Scholar
  45. Prameela, T. P., Suseela Bhai, R., & Anandaraj, M. (2012) Isolation of Phages infecting Ralstonia solanacearum causing bacterial wilt in ginger (Zingiber officinale Rosc.). In Abstracts: National Symposium on Heading Towards Molecular Horizons in Plant Pathology:Host resistance, Pathogen Dynamics, Diagnostics and Management: Indian Phytopathological Society (South Zone) 16th to 17th November 2012 P.15Google Scholar
  46. Ramesh, R., Joshi, A. A., & Ghanekar, M. P. (2009). Pseudomonads: Major antagonistic endophytic bacteria to suppress BW pathogen, Ralstonia solanacearum in the eggplant (Solanum melongena L.). World Journal of Microbiology and Biotechnology, 25, 4755.Google Scholar
  47. Raz, V., & Fluhr, R. (1992). Calcium requirement for ethylene-dependent responses. Plant Cell, 4, 1123–1130.CrossRefGoogle Scholar
  48. Safni, I., Cleenwerck, I., De Vos, P., Fegan, M., Sly, L., & Kappler, U. (2014). Polyphasic taxonomic revision of the Ralstonia solanacearum species complex: proposal to emend the descriptions of Ralstonia solanacearum and Ralstonia syzygii and reclassify current R. syzygii strains as Ralstonia syzygii subsp. syzygii subsp. nov., R. solanacearum phylotype IV strains as Ralstonia syzygii subsp. indonesiensis subsp. nov., banana blood disease bacterium strains as Ralstonia syzygii subsp. celebesensis subsp. nov. and R. solanacearum phylotype I and III strains as Ralstonia pseudosolanacearum sp. nov. International Journal of Systematic and Evolutionary Microbiology, 64, 3087–3103.CrossRefGoogle Scholar
  49. Sugar, D., Powers, K. A., & Hilton, R. J. (1991). Enhanced resistance to side rot in pears treated with calcium chloride during the growing season. Plant Disease, 75, 212–214.CrossRefGoogle Scholar
  50. Sugar, D., Benbow, D., Powers, K. A., & Basile, S. R. (2003). Effects of sequential calcium chloride, ziram, and yeast orchard sprays on postharvest decay of pear. Plant Disease, 87, 1260–1262.CrossRefGoogle Scholar
  51. Sugimoto, T., Watanabe, K., Yoshida, S., Aino, M., Matsuyama, M., Maekawa, K., et al. (2007). The effects of inorganic elements on the reduction of Phytophthora stem rot disease of soybean, the growth rate and zoospore release of Phytophthora sojae. Journal of Phytopathology, 155, 97–107.CrossRefGoogle Scholar
  52. Sugimoto, T., Watanabe, K., Yoshida, S., Aino, M., Irie, K., Matoh, T., et al. (2008). Select calcium compounds reduce the severity of Phytophthora stem rot of soybean. Plant Disease, 92, 1559–1565.CrossRefGoogle Scholar
  53. Toppe, B., & Thinggaard, K. (1998). Prevention of Phytophthora root rot in Gerbera by increasing copper ion concentration in the nutrient solution. European Journal of Plant Pathology, 104, 359–366.CrossRefGoogle Scholar
  54. Vasse, J., Frey, P., Trigalet, A., 1995. Microscopic studies of intercellular infection and protoxylem invasion of tomato roots by Pseudomonas solanacearum. Molecular Plant-.Google Scholar
  55. Volpin, H., Elad, Y., (1991). Influence of calcium nutrition on susceptibility of rose flowers to Botrytis blight. Phytopathology,–675.Google Scholar
  56. Wagura, A. G., Kimenju, J. W., & Gichimu, B. M. (2011). Comparative antibacterial effects of raw extracts and essential oils of Ocimum gratissimum L. against Ralstonia solanacearum (smith). International Journal of Plant Pathology, 2, 144–152.CrossRefGoogle Scholar
  57. Wicker, E., Grassart, L., Coranson-Beaudu, R., Mian, D., Guilbaud, C., Fegan, M., et al. (2007). Ralstonia solanacearum strains from Martinique (French West Indies) exhibiting a new pathogenic potential. Applied and Environmental Microbiology, 73, 6790–6801. Scholar
  58. Yamada, T., Kawasaki, T., Nagata, S., Fujiwara, A., Usami, S., & Fujie, M. (2007). New bacteriophages that infect the phytopathogen Ralstonia solanacearum. Microbiology, 153, 2630–2639.CrossRefGoogle Scholar
  59. Yamazaki, H. (2001). Relation between resistance to BW and calcium nutrition in tomato seedlings. Japan Agricultural Research Quarterly, 35, 163–169.CrossRefGoogle Scholar
  60. Yamazaki, H., & Hoshina, T. (1995). Calcium nutrition affects resistance of tomato seedlings to BW. HortScience, 30(1), 91–93.CrossRefGoogle Scholar
  61. Yamazaki, H., Ishizuka, O., & Hoshina, T. (1996). Relationship between resistance to BW and nutrient uptake in tomato seedlings. Soil Science & Plant Nutrition, 42, 203–208.CrossRefGoogle Scholar
  62. Yamazaki, H., Kikuchi, S., Hoshina, T., & Kimura, T. (2000). Calcium uptake and resistance to BW of mutually grafted tomato seedlings, soil Sci. Plant Nutr, 46, 529–534.Google Scholar
  63. Yuliar Nion, Y. A., & Toyota, K. (2015). Recent trends in control methods for BW diseases caused by Ralstonia solanacearum., 30(1), 1–11.Google Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2019

Authors and Affiliations

  • R. Suseela Bhai
    • 1
    Email author
  • T. P. Prameela
    • 1
  • K. Vincy
    • 1
  • C. N. Biju
    • 1
  • V. Srinivasan
    • 1
  • K. Nirmal Babu
    • 1
  1. 1.ICAR- Indian Institute of Spices ResearchKozhikodeIndia

Personalised recommendations