Advertisement

Characterization and pathogenicity of Cylindrocarpon-like asexual morphs associated with black foot disease in Algerian grapevine nurseries, with the description of Pleiocarpon algeriense sp. nov.

  • Wassila Aigoun-Mouhous
  • Georgina Elena
  • Ana Cabral
  • Maela León
  • Nasserdine Sabaou
  • Josep ArmengolEmail author
  • Cherifa Chaouia
  • Alla Eddine Mahamedi
  • Akila Berraf-Tebbal
Article
  • 67 Downloads

Abstract

During a survey of black foot disease in Algerian grapevine nurseries, a collection of 79 Cylindrocarpon-like isolates were obtained. Based on morphology and DNA sequence data of histone H3 (his3), three species of Dactylonectria were identified including Dactylonectria torresensis (40 isolates), D. macrodidyma (24 isolates) and D. novozelandica (14 isolates). In addition, one isolate belonging to the genus Pleiocarpon was found and it is described here as a new species, Pleiocarpon algeriense, based on morphological features and DNA sequence data of the internal transcribed spacer region (ITS), translation elongation factor 1-alpha (tef1), β-tubulin (tub2), large subunit nrDNA (LSU) and histone H3 (his3). This is the first time that these species are reported in Algeria. Pathogenicity tests, were conducted with representative isolates from each species. All of them were able to induce typical necrosis symptoms on grapevine cuttings. These results emphasize the urgent need to implement an integrated management strategy for black foot disease in Algerian grapevine nurseries in order to reduce the incidence of this disease on grapevine planting material and to prevent that it spreads to new grapevine production areas.

Keywords

Black foot Dactylonectria Pleiocarpon Taxonomy Phylogeny Vitis vinifera 

Notes

Acknowledgements

Much of this work was supported by the laboratory of the Grupo de Investigación en Hongos Fitopatógenos, Instituto Agroforestal Mediterráneo (IAM), Universitat Politècnica de València (UPV), Spain. W. Aigoun-Mouhous thanks the University of Blida for funding the research stay in Valencia, Spain. G. Elena was supported by the Spanish post-doctoral grant Juan de la Cierva-Formación. A. Cabral was supported by Portuguese national funds through Fundação para a Ciência e a Tecnologia grant SFRH/BPD/84508/2012 and FCT Unit funding UID/AGR/04129/2013. This work was also supported by EFRR “Multidisciplinary research to increase application potential of nanomaterials in agricultural practice” (No. CZ.02.1.01/0.0/0.0/16_025/0007314).

Compliance with ethical standards

The authors declare that ethical standards have been followed and that no human participants or animals were involved in this research.

Competing interests

The authors declare that they have no competing interests.

Supplementary material

10658_2019_1708_MOESM1_ESM.docx (45 kb)
ESM 1 (DOCX 44 kb)

References

  1. Abreo, E., Martinez, S., Bettucci, L., & Lupo, S. (2010). Morphological and molecular characterisation of Campylocarpon and Cylindrocarpon spp. associated with black foot disease of grapevines in Uruguay. Australasian Plant Pathology, 39(5), 446–452.Google Scholar
  2. Agustí-Brisach, C., & Armengol, J. (2013). Black-foot disease of grapevine: an update on taxonomy, epidemiology and management strategies. Phytopathologia Mediterranea, 52, 245–261.Google Scholar
  3. Agustí-Brisach, C., Gramaje, D., García-Jiménez, J., & Armengol, J. (2013). Detection of Blackfoot disease pathogens in the grapevine nursery propagation process in Spain. European Journal of Plant Pathology, 137, 103–112.Google Scholar
  4. Agustí-Brisach, C., Mostert, L., & Armengol, J. (2014). Detection and quantification of Ilyonectria spp. associated with black-foot disease of grapevine in nursery soils using multiplex nested PCR and quantitative PCR. Plant Pathology, 63(2), 316–322.Google Scholar
  5. Agustí-Brisach, C., Cabral, A., González-Domínguez, E., Pérez-Sierra, A., León, M., Abad-Campos, P., & Armengol, J. (2016). Characterization of Cylindrodendrum, Dactylonectria and Ilyonectria isolates associated with loquat decline in Spain, with description of Cylindrodendrum alicantinum sp. nov. European Journal of Plant Pathology, 145(1), 103–118.Google Scholar
  6. Aiello, D., Polizzi, G., Crous, P. W., & Lombard, L. (2017). Pleiocarpon gen. nov. and a new species of Ilyonectria causing basal rot of Strelitzia reginae in Italy. IMA Fungus, 8(1), 65–76.Google Scholar
  7. Alaniz, S., León, M., Vicent, A., García-Jiménez, J., Abad-Campos, P., & Armengol, J. (2007). Characterization of Cylindrocarpon species associated with black foot disease of grapevine in Spain. Plant Disease, 91(9), 1187–1193.Google Scholar
  8. Alaniz, S., Armengol, J., León, M., García-Jiménez, J., & Abad-Campos, P. (2009). Analysis of genetic and virulence diversity of Cylindrocarpon liriodendri and C. macrodidymum associated with black foot disease of grapevine. Mycological Research, 113(1), 16–23.Google Scholar
  9. Alvarez, L.A., Tamayo, D., Castilla, C., Munive, J., Agustí-Brisach, C., Gramaje, D. & Armengol, J. (2012). Occurrence of grapevine trunk pathogens in nurseries and vineyards in the northern and southern coast of Peru. 8 th International Workshop on Grapevine Trunk Diseases, Valencia, 18-21, juin 2012.Google Scholar
  10. Ammad, F., Benchabane, M., & Toumi, M. (2014). Diversity of fungal trunk pathogens associated with grapevine dieback of grapevine in Algeria. Jordan Journal of Biological Sciences, 7, 35–39.Google Scholar
  11. Armengol, J., Vicent, A., García-Jiménez, J., García-Figueres, F., & Torné, L. (2001). Fungi associated with esca and grapevine declines in Spain: a three-year survey. Phytopathologia Mediterranea, 40(40, 3), 1000–1005.Google Scholar
  12. Aroca, A., GarcÝa-Figueres, F., Bracamonte, L., Luque, J., & Raposo, R. (2006). A survey of trunk disease pathogens within rootstocks of grapevines in Spain. European Journal of Plant Pathology, 115(2), 195.Google Scholar
  13. Auger, J., Esterio, M., & Pérez, I. (2007). First report of black foot disease of grapevine caused by Cylindrocarpon macrodidymum in Chile. Plant Disease, 91, 470.Google Scholar
  14. Badour, C. (1969). Gangrène ou Pied noir. Le Vigneron Champenois, 5, 197–201.Google Scholar
  15. Berlanas, C., López-Manzanares, B., & Gramaje, D. (2017). Estimation of viable propagules of black-foot disease pathogens in grapevine cultivated soils and their relation to production systems and soil properties. Plant and Soil, 417, 467–479.Google Scholar
  16. Berraf, A., & Peros, J. (2005). Importance of Eutypa dieback and esca in Algeria and structure of the associated fungal community. Journal International des Sciences de la Vigne et du Vin, 39(3), 121–128.Google Scholar
  17. Berraf-Tebbal, A., Bouznad, Z., Santos, J. M., Coelho, M., Peros, J. P., & Phillips, A. J. L. (2011). Phaeoacremonium species associated with Eutypa dieback and esca of grapevines in Algeria. Phytopathologia Mediterranea, 50(4), 86–97.Google Scholar
  18. Berraf-Tebbal, A., Guereiro, M. A., & Phillips, A. J. (2014). Phylogeny of Neofusicoccum species associated with grapevine trunk diseases in Algeria, with description of Neofusicoccum algeriense sp. nov. Phytopathologia Mediterranea, 53, 416–427.Google Scholar
  19. Bertsch, C., Ramírez-Suero, M., Magnin-Robert, M., Larignon, P., Chong, J., Abou-Mansour, E., Spagnolo, A., Clément, C., & Fontaine, F. (2013). Grapevine trunk diseases: complex and still poorly understood. Plant Pathology, 62(2), 243–265.Google Scholar
  20. Cabral, A., Rego, C., Nascimento, T., Oliveira, H., Groenewald, J. Z., & Crous, P. W. (2012a). Multi-gene analysis and morphology reveal novel Ilyonectria species associated with black foot disease of grapevines. Fungal Biology, 116(1), 62–80.Google Scholar
  21. Cabral, A., Groenewald, J. Z., Rego, C., Oliveira, H., & Crous, P. W. (2012b). Cylindrocarpon root rot: multi-gene analysis reveals novel species within Ilyonectria radicicola species complex. Mycological Progress, 11, 655–688.Google Scholar
  22. Carlucci, A., Francesco, L., Mostert, L., Halleen, F., & Raimondo, M. L. (2017). Occurrence fungi causing black foot on young grapevines and nursery rootstock plants in Italy. Phytopathologia Mediterranea, 56(1), 10–39.Google Scholar
  23. Chaverri, P., Salgado, C., Hirooka, Y., Rossman, A., & Samuels, G. (2011). Delimitation of Neonectria and Cylindrocarpon (Nectriaceae, Hypocreales, Ascomycota) and related genera with Cylindrocarpon-like anamorphs. Studies in Mycology, 68, 57–78.Google Scholar
  24. Crous, P. W., Gams, W., Stalpers, J. A., Robert, V., & Stegehuis, G. (2004a). MycoBank: an online initiative to launch mycology into the 21st century. Studies in Mycology, 50, 19–12.Google Scholar
  25. Crous, P. W., Groenewald, J. Z., Risède, J.-M., Simoneau, P., & Hywel-Jones, N. L. (2004b). Calonectria species and their Cylindrocladium anamorphs: species with sphaeropedunculate vesicles. Studies in Mycology, 50, 415–430.Google Scholar
  26. Crous, P. W., Verkley, G. J. M., Groenewald, J. Z., & Samson, R. A. (2009). CBS Laboratory manual series 1: Fungal biodiversity. CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands.Google Scholar
  27. Debray, F. (1892). Apoplexie de la vigne. Progres Agricole et Viticole, 17, 528–531.Google Scholar
  28. Dubrovsky, S., & Fabritius, A. L. (2007). Occurrence of Cylindrocarpon spp. in nursery grapevines in California. Phytopathologia Mediterranea, 46(1), 84–86.Google Scholar
  29. Fourie, P., & Halleen, F. (2001). Diagnosis of fungal diseases and their involvement in dieback disease of young vines. Wynboer, 149, 19–23.Google Scholar
  30. Fourie, P., & Halleen, F. (2004). Occurrence of grapevine trunk disease pathogens in rootstock mother plants in South Africa. Australasian Plant Pathology, 33(2), 313–315.Google Scholar
  31. Gardes, M., & Bruns, T. D. (1993). ITS primers with enhanced specificity for basidiomycetes – application to the identification of mycorrhizae and rusts. Molecular Ecology, 2, 113–118.Google Scholar
  32. Garrido, L. D. R., Sônego, O. R., & Urben, A. F. (2004). Cylindrocarpon destructans causal agent of grapevine black-foot in Rio Grande do Sul. Fitopatologia Brasileira, 29(5), 548–550.Google Scholar
  33. Glass, N. L., & Donaldson, G. (1995). Development of primer sets designed for use with PCR to amplify conserved genes from filamentous ascomycetes. Applied and Environmental Microbiology, 61, 1323–1330.Google Scholar
  34. Gramaje, D., & Armengol, J. (2011). Fungal trunk pathogens in the grapevine propagation process: potential inoculum sources, detection, identification, and management strategies. Plant Disease, 95(9), 1040–1055.Google Scholar
  35. Gramaje, D., & Di Marco, S. (2015). Identifying practices likely to have impacts on grapevine trunk disease infections: a European nursery survey. Phytopathologia Mediterranea, 54(2), 313–324.Google Scholar
  36. Gramaje, D., Armengol, J., Colino, M., Santiago, R., Moralejo, E., Olmo, D., Luque, J., & Mostert, L. (2009). First report of Phaeoacremonium inflatipes, P. iranianum and P. sicilianum causing Petri disease of grapevine in Spain. Plant Disease, 93, 964.Google Scholar
  37. Gramaje, D., Úrbez-Torres, J. R., & Sosnowski, M. R. (2018). Managing grapevine trunk diseases with respect to etiology and epidemiology: current strategies and future prospects. Plant Disease, 102(4), 12–39.Google Scholar
  38. Halleen, F., Crous, R., & Petrin, O. (2003). Fungi associated with healthy grapevine cuttings in nurseries, with special reference to pathogens involved in the decline of young vines. Australasian Plant Pathology, 32(1), 47–52.Google Scholar
  39. Halleen, F., Schroers, H. J., Groenewald, J. Z., & Crous, P. W. (2004). Novel species of Cylindrocarpon (Neonectria) and Campylocarpon gen. Nov. associated with black foot disease of grapevines (Vitis spp.). Studies in Mycology, 50(2), 431–455.Google Scholar
  40. Halleen, F., Schroers, H. J., Groenewald, J. Z., Rego, C., Oliveira, H., & Crous, P. W. (2006). Neonectria liriodendri sp. nov., the main causal agent of black foot disease of grapevines. Studies in Mycology, 55, 227–234.Google Scholar
  41. Hallenn, F., Fourie, P. H., & Crous, P. W. (2006). A review of black foot disease of grapevine. Phytopathologia Mediterranea, 45(4), 55–67.Google Scholar
  42. Hofstetter, V., Casieri, L., Viret, O., & Gindro, K. (2009). Esca de la vigne et communauté fongique. Revue suisse Vitic. Arboric. Hortic, 41, 247–253.Google Scholar
  43. Hofstetter, V., Dubuis, P. H., Zufferey, V., Fabre, A. L., Viret, O., & Gindro, K. (2017). Maladies du bois de la vigne: état des lieux et axes de recherche d’Agroscope. Revue Suisse de Viticulture, d'Arboriculture et d'Horticulture, 49(2), 88–96.Google Scholar
  44. Kumar, S., Stecher, G., & Tamura, K. (2015). MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33, 1870–1874.Google Scholar
  45. Larignon, P. (2012). Maladies cryptogamiques du bois de la vigne : symptomatologie et agents pathogènes. http://www.vignevin.com, 2-5.
  46. Larignon, P. (2016). Maladies cryptogamiques du bois de la vigne : symptomatologie et agents pathogènes. http://www.vignevin.com, 2ème édition, 23-27.
  47. Levadoux, L., Benabderrabou, A., & Douaouri, B. (1971). Ampelographie algerienne; cepages de cuve et de table cultives en Algerie. p 118Google Scholar
  48. Lombard, L., Van Der Merwe, A., Groenewald, J. Z., & Crous, P. W. (2014). Lineages in Nectriaceae: re-evaluating the generic status of Ilyonectria and allied genera. Phytopathologia Mediterranea, 53(3), 515–532.Google Scholar
  49. Maluta, D., & Larignon, P. (1991). Pied-noir: mieux vaut prévenir. Viticulture, 11, 71–72.Google Scholar
  50. Miller, M. A., Pfeiffer, W., & Schwartz, T. (2010). Creating the CIPRES science gateway for inference of large phylogenetic trees. Proceedings of the Gateway Computing Environments Workshop, New Orleans, LA, 14 Nov 2010, pp 1-8.Google Scholar
  51. Moncalvo, J. M., Wang, H. H., & Hseu, R. S. (1995). Phylogenetic relationships in Ganoderma inferred from the internal transcribed spacers and 25S ribosomal DNA sequences. Mycologia, 87, 223–238.Google Scholar
  52. Mora-Sala, B., Cabral, A., León, M., Agustí-Brisach, C., Armengol, J., & Abad-Campos, P. (2018). Survey, identification, and characterisation of Cylindrocarpon-like asexual morphs in Spanish forest nurseries. Plant Disease, 102, 2083–2100.Google Scholar
  53. Mugnai, L., Graniti, A., & Surico, G. (1999). Esca (black measles) and brown wood-streaking: two old and elusive diseases of grapevines. Plant Disease, 83, 404–418.Google Scholar
  54. Munive, J., Tamayo, D., Castilla, P.C., Agustí-Brisach, C., Gramaje, D., Armengol, J., & Alvarez, L.A. (2013). Especies de hongos de madera de vid asociados a infecciones de plantas en viveros y en campos en producción en el Perú XXII Congresso Peruano y XVII Congresso Latinoamericano de Fitopatologia. Lambayeque, Perú, 1–5, octubre 2013, 115–116.Google Scholar
  55. Nirenberg, H. (1976). Untersuchungen über die morphologische und biologische Differenzierung in der Fusarium-Section Liseola. Mitteilungen aus der Biologischen Bundesanstalt für Land- und Forstwirtschaft, 169, 1–117.Google Scholar
  56. O’Donnell, K., & Cigelnik, E. (1997). Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus fusarium are nonorthologous. Molecular Phylogenetics and Evolution, 7, 103–116.Google Scholar
  57. O’Gorman, D. T., Haag, P., & Sholberg, P. L. (2009). News diseases causing decline of wine grapes in the Okanagan valley. In: Canadian plant disease survey. The Canadian Phytopathological Society, 90, 140–143.Google Scholar
  58. O'Donnell, K., Sarver, B. A., Brandt, M., et al. (2007). Phylogenetic diversity and microsphere array-based genotyping of human pathogenic Fusaria, including isolates from the multistate contact lens-associated U.S. keratitis outbreaks of 2005 and 2006. Journal of Clinical Microbiology, 45, 2235–2248.Google Scholar
  59. Oliveira, H., Rego, M. C., & Nascimento, T. (2004). Decline of young grapevines caused by fungi. Acta Horticulturae, 652, 295–304.Google Scholar
  60. Özben, S., Demirci, F., Değirmenci, K., & Uzunok, S. (2012). First report of Cylindrocarpon macrodidymum associated with black foot diseases of grapevine in Turkey. Plant Disease, 96(5), 762–762.Google Scholar
  61. Petit, E., & Gubler, W. D. (2005). Characterization of Cylindrocarpon species, the cause of black foot disease of grapevine in California. Plant Disease, 89, 1051–1059.Google Scholar
  62. Petit, E., Barriault, E., Baumgartner, K., Wilcox, W. F., & Rolshausen, P. E. (2011). Cylindrocarpon species associated with black-foot of grapevine in northeastern United States and southeastern Canada. American Journal of Enology and Viticulture, 62, 177–183.Google Scholar
  63. Ravaz, L. (1905). Sur la cause du dépérissement des vignes de la Tunisie, de l'Algérie et du Midi de la France. (Ursache des Zurückgehens der Reben in Tunis, Algier und Südfrankreich): JSTOR.Google Scholar
  64. Rayner, R. W. (1970). A mycological colour chart. A mycological colour chart. Commonwealth Mycological Institute and British Mycological Society. Kew Surrey. United Kingdom.Google Scholar
  65. Rego, M. (1994). Nova e grave micose da videira em Portugal. Agente responsável: Cylindrocarpon destructans (Zins.) Scholten. Publicação do Laboratório de Patologia Vegetal Veríssimo de Almeida, 67, 1–4.Google Scholar
  66. Rego, C., Oliveira, H., Carvalho, A., & Phillips, A. (2000). Involvement of Phaeoacremonium spp. and Cylindrocarpon destructans with grapevine decline in Portugal [Vitis vinifera L.]. Phytopathologia Mediterranea (Italy), 39, 76–79.Google Scholar
  67. Reis, P., Cabral, A., Nascimento, T., Oliveira, H., & Rego, C. (2013). Diversity of Ilyonectria species in a young vineyard affected by black foot disease. Phytopathologia Mediterranea, 52(2), 335–346.Google Scholar
  68. Ridgway, H. J., Sleight, B. E., & Steward, A. (2002). Molecular evidence for the presence of Phaeomoniella chlamydospora in New Zealand nurseries, and its detection in rootstock mothervines using species-specific PCR. Australasian Plant Pathology, 31, 267–271.Google Scholar
  69. Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Hohna, S., Larget, B., Liu, L., Suchard, M. A., & Huelsenbeck, J. P. (2012). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61, 539–542.Google Scholar
  70. Rumbos, I., & Rumbou, A. (2001). Fungi associated with esca and young grapevine decline in Greece. Phytopathologia Mediterranea, 40(3), 330–335.Google Scholar
  71. Santos, R. F., Blume, E., Muniz, M. F. B., Heckler, L. I., Finger, G., & Maciel, C. G. (2014). First report of Ilyonectria macrodidyma associated with black foot disease of grapevine in Brazil. Plant Disease, 98, 156.Google Scholar
  72. Sweetingham, M. W. (1983). Studies on the nature of the pathogenicity of soil-borne Cylindrocarpon species. Ph. D. Thesis. University of Tasmania. Google Scholar
  73. Urbez-Torres, J. R. (2011). The status of Botryosphaeriaceae species infecting grapevines. Phytopathologia Mediterranea, 50(4), 5–45.Google Scholar
  74. Úrbez-Torres, J. R., Haag, P., Bowen, P., & O’Gorman, D. T. (2014). Grapevine trunk diseases in British Columbia: incidence and characterization of the fungal pathogens associated with black foot disease of grapevine. Plant Disease, 98(4), 56–468.Google Scholar
  75. Vaidya, G., Lohman, D. J., & Meier, R. (2011). SequenceMatrix: conca-tenation software for the fast assembly of multigene data-sets with character set and codon information. Cladistics, 27(2), 171–180.Google Scholar
  76. Vilgalys, R., & Hester, M. (1990). Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. Journal of Bacteriology, 172, 4238–4246.Google Scholar
  77. Viret, O. & Gindro, K. (2014). La Vigne, vol. 1. Maladies fongiques. Editions AMTRA, Nyon, 255 p.Google Scholar
  78. White, T. J., Bruns, T. D., Lee, S. B., & Taylor, J. W. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In M. A. Innis, D. H. Gelfand, J. J. Sninsky, & T. J. White (Eds.), PCR protocols – a guide to methods and applications (pp. 315–322). Academic Press: New York.Google Scholar
  79. Whitelaw-Weckert, M. A., Nair, N. G., Lamont, R., Alonso, M., Priest, M. J., & Huang, R. (2007). Root infection of Vitis vinifera by Cylindrocarpon liriodendri in Australia. Australasian Plant Pathology, 36, 403–406.Google Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2019

Authors and Affiliations

  • Wassila Aigoun-Mouhous
    • 1
    • 2
  • Georgina Elena
    • 3
  • Ana Cabral
    • 4
  • Maela León
    • 3
  • Nasserdine Sabaou
    • 2
  • Josep Armengol
    • 3
    Email author
  • Cherifa Chaouia
    • 1
  • Alla Eddine Mahamedi
    • 2
    • 5
  • Akila Berraf-Tebbal
    • 2
    • 6
  1. 1.Laboratoire de Biotechnologie des Productions Végétales, Faculté des Sciences Naturelles et de la Vie (SNV), Département BiotechnologieUniversité de Blida 1BlidaAlgeria
  2. 2.Laboratoire de Biologie des Systèmes Microbiens (LBSM), Département des Sciences NaturellesEcole Normale Supérieure de KoubaAlgerAlgeria
  3. 3.Instituto Agroforestal MediterráneoUniversitat Politècnica de ValènciaValenciaSpain
  4. 4.Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de AgronomiaUniversidade de LisboaLisbonPortugal
  5. 5.Département de Biologie, Faculté des Sciences de la Nature et de la Vie et Sciences de la TerreUniversité de GhardaïaGhardaïaAlgeria
  6. 6.Mendel University in Brno, Faculty of HorticultureMendeleum - Institute of GeneticsLedniceCzech Republic

Personalised recommendations