Genetic diversity of ‘Candidatus Liberibacter asiaticus’ in Brazil analyzed in different geographic regions and citrus varieties

  • Larissa Bonevaes de Paula
  • Hong Lin
  • Eduardo Sanches Stuchi
  • Carolina Sardinha Francisco
  • Nágela Gomes Safady
  • Helvécio Della Coletta-FilhoEmail author


The bacterium ‘Candidatus Liberibacter asiaticus’ - CLas, the agent associated with citrus huanglongbing disease was first reported in Sao Paulo State in 2004 and has spread throughout the citrus-growing regions of Sao Paulo and further to the states of Minas Gerais and Parana. However, little information is available regarding the genetic diversity of CLas since its introduction. Understanding the genetic diversity of this bacterium is important for tracing migration routes and for identifying evolutionary selection forces that may affect the genetic diversity of this pathogen. Total DNA from 199 HLB-diseased citrus species trees was sampled from geographic regions in Sao Paulo, Parana and Minas Gerais states and the CLas isolates were genotyped by simple sequence DNA repeats (SSR). Nei’s genetic diversity index was observed to be low in all populations (HNei = 0.11–0.26). Wright’s fixation index (FST), which measures population genetic differentiation, did not differ significantly between CLas populations from Sao Paulo State and from Minas Gerais, but significant values (FST = 0.118–0.191) of the Parana CLas population distinguish it from the others. Interestingly, higher values (FST = 0.275–0.445) were observed for the CLas populations obtained from different citrus species compared to sweet orange, suggesting that the citrus genotypes could be driven the genetic diversity of CLas. Clustering analysis supports the FST results that split the CLas samples into three genetically distinct populations. These results indicate that genetically homogeneous populations of CLas infect sweet orange plants in various regions of Sao Paulo State and Minas Gerais, but not Parana, suggesting that different introduction events may have occurred for the Sao Paulo and Parana states.


Greening SSR Genetic diversity Citrus pathogen 



We thank our lab colleagues for constructive suggestions and discussions, and we also thank the growers who granted us access to their farms to collect the samples. The authors, L.B. de Paula thanks CAPES (Coordination for the Improvement of Higher Level Personnel) for Master’s degree scholarship and H. D. Coletta-Filho acknowledges CNPq for research fellowship (Proc. No. 313676/2017-8).


This work was funded by Brazilian National Council for Scientific and Technological Development (CNPq - project number 481667/2012–1).

Compliance with ethical standards

Conflict of interests

All the authors have no conflict of interests.

Supplementary material

10658_2019_1695_MOESM1_ESM.xlsx (15 kb)
ESM 1 (XLSX 14 kb)


  1. Albrecht, U., & Bowman, K. D. (2011). Tolerance of the trifoliate citrus hybrid US-897 (Citrus reticulata Blanco × Poncirus trifoliata L. Raf.) to huanglongbing. HortScience, 46, 16–22.Google Scholar
  2. Ammar, E., Shatters, R. G., Lynch, C., & Hall, D. G. (2011). Detection and relative titer of “Candidatus Liberibacter asiaticus” in the salivary glands and alimentary canal of Diaphorina citri (Hemiptera: Psyllidae) vector of citrus huanglongbing disease. Annals of the Entomological Society of America, 104, 526–533.Google Scholar
  3. Bastianel, C., Renaudin, J., Bove, J. M., & Eveillard, S. (2005). Diversity of ‘Candidatus Liberibacter asiaticus’ based on the omp gene sequence. Applied and Environmental Microbiology, 71, 6473–6478.Google Scholar
  4. Benson, G. (1999). Tandem repeats finder: a program to analyze DNA sequences. Oxford University Press Nucleic Acids Research, 27, 573–580.Google Scholar
  5. Borgoni, P. C., Vendramim, J. D., Lourencão, A. L., & Machado, M. A. (2014). Resistance of citrus and related genera to Diaphorina citri Kuwayama (Hemiptera: Liviidae). Neotropical Entomology, 43, 465–469.Google Scholar
  6. Bove, J. M. (2006). Huanglongbing: a destructive, newly-emerging, century-old disease of citrus. Journal of Plant Pathology, 88, 7–37.Google Scholar
  7. Brockhurst, M. A., Chapman, T., King, K. C., Mank, J. E., Paterson, S., & Hurst, G. D. D. (2014). Running with the Red Queen: the role of biotic conflicts in evolution. Proceedings of the Royal Society B, 281, 20141382.Google Scholar
  8. Canale, M. C., Tomaseto, A. F., Haddad, M. d. L., Coletta-Filho, H. D., & Lopes, J. S. (2017). Latency and persistence of ‘Candidatus Liberibacter asiaticus’ in its psyllid vector, Diaphorina citri Kuwayama (Hemiptera: Liviidae). Phytopathology, 107, 264–272.Google Scholar
  9. Capoor, S. P. (1963). Decline of citrus trees in India. Bulletin, National Institute of Science India, 234, 48–64.Google Scholar
  10. Chen, J., Deng, X., Sun, X., Jones, D., Irey, M., & Civerolo, E. (2010). Guangdong and Florida populations of ‘Candidatus Liberibacter asiaticus’ distinguished by a genomic locus with short tandem repeats. Phytopathology, 100, 567–572.Google Scholar
  11. Coletta-Filho, H. D., Targon, M. L. P. N., Takita, M. A., De Negri, J. D., Pompeu, J., Jr., & Machado, M. A. (2004). First report of the causal agent of Huanglongbing (‘Candidatus Liberibacter asiaticus’) in Brazil. Plant Disease, 88, 1382.Google Scholar
  12. Coletta-Filho, H. D., Carlos, E. F., Alves, K. C. S., Pereira, M. A. R., Boscariol-Camargo, R. L., de Souza, A. A., & Machado, M. A. (2009). In planta multiplication and graft transmission of ‘Candidatus Liberibacter asiaticus’ revealed by real-time PCR. European Journal of Plant Pathology, 1126, 53–60.Google Scholar
  13. Corander, J., Waldmann, P., & Sillampaa, M. J. (2003). Bayesian analysis of genetic differentiation between populations. Genetics, 163, 367–374.Google Scholar
  14. Deng, X., Lopes, S., Wang, X., Sun, X., Jones, D., Irey, M., Civerolo, E., & Chen, J. (2014). Characterization of ‘Candidatus Liberibacter asiaticus’ populations by double-locus analyses. Current Microbiology, 69, 554–560.Google Scholar
  15. Ding, F., Deng, X., Hong, N., Zhong, Y., Wang, G., & Yi, G. (2009). Phylogenetic analysis of the citrus Huanglongbing (HLB) bacterium based on the sequences of 16S rDNA and 16S/23S rDNA intergenic regions among isolates in China. European Journal of Plant Pathology, 124, 495–503.Google Scholar
  16. Duan, Y., Zhou, L., Hall, D. G., Li, W., Doddapaneni, H., Lin, H., Liu, L., Vahling, C. M., Gabriel, D. W., Williams, K. P., Dickerman, A., Sun, Y., & Gottwald, T. (2009). Complete genome sequence of citrus huanglongbing bacterium, ‘Candidatus Liberibacter asiaticus’ obtained through metagenomics. Molecular Plant-Microbe Interactions, 22, 1011–1020.Google Scholar
  17. Gottwald, T. R. (2010). Current epidemiological understanding of citrus huanglongbing. Annual Review of Phytopathology, 48, 119–139.Google Scholar
  18. Goudet, J. (1995). FSTAT (version 1.2): a computer program to calculated F-statistics. Journal of Heredity, 86, 485–486.Google Scholar
  19. Haapalainen, M. (2014). Biology and epidemics of Candidatus Liberibacter species, psyllid-transmitted plant-pathogenic bacteria. Annals of Applied Biology, 165, 172–198.Google Scholar
  20. Halbert, S. E., & Manjunath, K. L. (2004). Asian Citrus Psyllids (Sternorrhyncha: Psyllidae) and greening disease of citrus: a literature review and assessment of risk in Florida. Florida Entomologist, 87, 330–353.Google Scholar
  21. Hall, D. G., Richardson, M. L., Ammar, E. D., & Halbert, S. E. (2013). Asian citrus psyllid, Diaphorina citri, vector of citrus huanglongbing disease. Entomologia Experimentalis et Applicata, 146, 207–223.Google Scholar
  22. He, F., & Hu, X. S. (2005). Hubbell’s fundamental biodiversity parameter and the Simpson diversity index. Ecology Letters, 8, 386–390.Google Scholar
  23. Islam, M. S., Glynn, J. M., Bai, Y., Duan, Y.-P., Coletta-Filho, H. D., Kuruba, G., Civerolo, E. L., & Lin, H. (2012). Multilocus microsatellite analysis of ‘Candidatus Liberibacter asiaticus’ associated with citrus Huanglongbing worldwide. BMC Microbiology, 12, 39.Google Scholar
  24. Katoh, H., Subandiyah, S., Tomimura, K., Okuda, M., Su, H. J., & Iwanami, T. (2011). Differentiation of ‘Candidatus Liberibacter asiaticus’ isolates by variable-number tandem-repeat analysis. Applied and Environmental Microbiology, 77, 1910–1917.Google Scholar
  25. Katoh, H., Miyata, S. I., Inoue, H., & Iwanami, T. (2014). Unique features of a Japanese ‘Candidatus Liberibacter asiaticus’ strain revealed by whole genome sequencing. PLoS One, 9(9), e106109.Google Scholar
  26. Kobori, Y., Nakata, T., Ohto, Y., & Takasu, F. (2011). Dispersal of adult Asian citrus psyllid, Diaphorina citri Kuwayama (Homoptera: Psyllidae), the vector of citrus greening disease, in artificial release experiments. Applied Entomology and Zoology, 46, 27–30.Google Scholar
  27. Lin, H., Chen, C., Doddapaneni, H., Duan, Y., Civerolo, E. L., Bai, X., & Zhao, X. (2010). A new diagnostic system for ultra-sensitive and specific detection and quantification of ‘Candidatus Liberibacter asiaticus’, the bacterium associated with citrus huanglongbing. Journal of Microbiology Methods, 81, 17–25.Google Scholar
  28. Lista, F., Faggioni, G., Valjevac, S., Ciammaruconi, A., Vaissaire, J., le Doujet, C., Gorgé, O., de Santis, R., Carattoli, A., Ciervo, A., Fasanella, A., Orsini, F., D'Amelio, R., Pourcel, C., Cassone, A., & Vergnaud, G. (2006). Genotyping of Bacillus anthracis strains based on automated capillary 25-loci multiple locus variable-number tandem repeats analysis. BMC Microbiology, 6, 33.Google Scholar
  29. Ma, J., & Amos, C. I. (2012). Principal components analysis of population admixture. PLoS One, 7(7).Google Scholar
  30. Matos, L. A., Hilf, M. E., Chen, J., & Folimonova, S. Y. (2013). Validation of “variable number of tandem repeat”-based approach for examination of ‘Candidatus Liberibacter asiaticus’ diversity and its applications for the analysis of the pathogen populations in the areas of recent introduction. PlosOne, 8(11).Google Scholar
  31. Meirmans, P. G., & van Tienderen, P. H. (2004). GENOTYPE and GENODIVE: two programs for the analysis of genetic diversity of asexual organisms. Molecular Ecology Notes Resources, 4, 792–794.Google Scholar
  32. Murray, M. G., & Thompson, W. F. (1980). Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research, 8, 4321–4325.Google Scholar
  33. Peakall, R., & Smouse, P. E. (2012). GenALEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics, 28, 2537–2539.Google Scholar
  34. Ramadugu, C., Keremane, M. L., Halbert, S. E., Duan, Y.-P., Roose, M. L., Stover, E., & Lee, R. F. (2016). Long-term field evaluation reveals huanglongbing resistance in Citrus relatives. Plant Disease, 100, 1858–1869.Google Scholar
  35. Restrepo, S., Velez, C. M., & Duque, M. C. (2004). Genetic structure and population dynamics of Xanthomonas axonopodis pv. manihotis in Colombia from 1995 to 1999. Applied and Environmental Microbiology, 70, 255–261.Google Scholar
  36. Slatkin, M. (1987). Gene flow and geographic structure of natural populations. Science, 236, 787–792.Google Scholar
  37. Subandiyah, S., Iwanami, T., Tsuyumu, S., & Ieki, H. (2000). Comparison of 16S rDNA and 16S/23S intergenic region sequences among citrus greening organisms in Asia. Plant Disease, 84, 15–18.Google Scholar
  38. Teixeira, C. D., Saillard, C., Eveillard, S., Danet, J. L., da Costa, P. I., Ayres, A. J., & Bové, J. (2005). ‘Candidatus Liberibacter americanus’, associated with citrus huanglongbing (greening disease) in São Paulo State, Brazil. International Journal of Systematic and Evolutionary Microbiology, 55, 1857–1862.Google Scholar
  39. Tomaseto, A. F., Krugner, R., & Lopes, J. R. S. (2016). Effect of plant barriers and citrus leaf age on dispersal of Diaphorina citri (Hemiptera: Liviidae). Journal of Applied Entomology, 140, 91–102.Google Scholar
  40. Tomimura, K., Miyata, S.-I., Furuya, N., Kubota, K., Okuda, M., Subandiyah, S., Hung, T. H., Su, H. J., & Iwanami, T. (2009). Evaluation of genetic diversity among “Candidatus Liberibacter asiaticus” isolates collected in Southeast Asia. Phytopathology, 99, 1062–1069.Google Scholar
  41. Untergrasser, A., Cutcutache, I., Koressaar, T., Ye, J., Faircloth, B. C., Remm, M., & Rozen, S. G. (2012). Primer3 new capabilities and interfaces. Nucleic Acids Research, 40, 115.Google Scholar
  42. Waples, R. S., & Gaggiotti, O. (2006). What is a population? An empirical evaluation of some genetic methods for identifying the number of gene pools and their degree of connectivity. Molecular Ecology, 15, 1419–1439.Google Scholar
  43. Weisburg, W. G., Barns, S. M., Pelletier, D. A., & Lane, D. J. (1991). 16S ribosomal DNA amplification for phylogenetic study. Journal of Bacteriology, 173, 697–703.Google Scholar
  44. Wright, S. (1951). The genetical structure of populations. Annals of Eugenics, 15, 322–354.Google Scholar
  45. Zhou, L., Powell, C. A., Hoffman, M. T., Li, W., Fan, G., Liu, B., Lin, H., & Duan, Y.-P. (2011). Diversity and plasticity of the intracellular plant pathogen and insect symbiont ‘Candidatus Liberibacter asiaticus’ as revealed by hypervariable prophage genes with intragenic tandem repeats. Applied and Environmental Microbiology, 77, 6663–6673.Google Scholar
  46. Zhou, L., Powell, C. A., Li, W., Irey, M., & Duan, Y.-P. (2013). Prophage-mediated dynamics of ‘Candidatus Liberibacter asiaticus’ populations, the destructive bacterial pathogens of citrus Huanglongbing. PLoS One, 8(12).Google Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2019

Authors and Affiliations

  • Larissa Bonevaes de Paula
    • 1
  • Hong Lin
    • 2
  • Eduardo Sanches Stuchi
    • 3
  • Carolina Sardinha Francisco
    • 4
  • Nágela Gomes Safady
    • 5
  • Helvécio Della Coletta-Filho
    • 5
    Email author
  1. 1.Campus de Jaboticabal, Graduate Program in Genetics and Plant BreedingUniversity of Estadual Paulista - UNESPJaboticabalBrazil
  2. 2.USDA / San Joaquin Valley Agricultural Sciences CenterParlierUSA
  3. 3.Estação Experimental de Citricultura de Bebedouro/EMBRAPABebedouroBrazil
  4. 4.Plant Pathology, Institute of Integrative BiologyETH ZürichZürichSwitzerland
  5. 5. Instituto Agronômico (IAC)/Centro de Citricultura Sylvio MoreiraCordeirópolisBrazil

Personalised recommendations