Proteomic analysis of the tripartite interaction between black pepper, Trichoderma harzianum and Phytophthora capsici provides insights into induced systemic resistance mediated by Trichoderma spp.

  • P. Umadevi
  • M. AnandarajEmail author


Trichoderma harzianum (MTCC5179) is the biocontrol agent in the black pepper (Piper nigrum.L) production system against the destructive pathogen Phytophthora capsici which causes foot and root rot. We employed label-free quantitative proteomics to study the T. harzianum mediated induced systemic response in this system. We studied the defence response in leaves in T. harziznum primed plant roots which are also infected with P. capsici. The pattern of interactions was studied as black pepper × T. harzianum (two-way), black pepper × P. capsici (two-way) and black pepper × T. harzianum × P. capsici (three-way). The proteins induced only in the three-way interaction were identified as Trichoderma induced resistance proteins. Eighteen reactive oxygen species-related proteins and 22 defence-related proteins were identified as marker proteins. Apart from these groups, the ethylene synthesis, isoflavanoid pathway and lignin synthesis proteins were found to be enhanced. We report the early induced systemic resistance in leaves after Trichoderma priming at roots (72, and 96 h after interaction) against Phytophthora capsici after 12 and 24 h of infection at roots. The peptides/proteins from this study will serve as important marker peptides/proteins for the induced systemic resistance in plants by Trichoderma.


Proteomics Peptides ROS related proteins Defense-related proteins Phytophthora capsici T-ISR 



The authors acknowledge with thanks the financial support from ICAR-Outreach programme on Phytophthora, Fusarium and Ralstonia diseases of horticultural and field crops (PhytoFuRa). The mass spectrometry performed by C-CAMP, Bangalore, is gratefully acknowledged.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Involvement of human participants and /or animals

The present research did not involve any experimentation on humans or animals.

Informed consent

Authors are ready to provide any additional information of the present study to the readers.

Supplementary material

10658_2019_1685_MOESM1_ESM.xlsx (14 kb)
Supplementary file 1 (XLSX 13 kb)
10658_2019_1685_MOESM2_ESM.xlsx (13 kb)
Supplementary file 2 (XLSX 13 kb)
10658_2019_1685_MOESM3_ESM.xlsx (34 kb)
Supplementary file 3 (XLSX 33 kb)
10658_2019_1685_MOESM4_ESM.docx (1.8 mb)
Supplementary file 4 (DOCX 1826 kb)


  1. Ahmed, A. S., Sanchez, C. P., & Candela, M. E. (2000). Evaluation of induction of systemic resistance in pepper plants (Capsicum annum) to Phytophthora capsici using Trichoderma harzianum and its relation with capsidiol accumulation. European Journal of Plant Pathology, 106, 817–824.CrossRefGoogle Scholar
  2. Anandaraj, M. (2000). Diseases of black pepper. In P. N. Ravindran (Ed.), Black pepper (Piper nigrum L.) (pp. 239–268). Harwood Academic Publisher.Google Scholar
  3. Anandaraj, M., & Sarma, Y.R. (2003). The potential of PGPRs in disease management of spice crop. In 6th International PGPR workshop, Calicut, India,5–10 October 2003.Google Scholar
  4. Baier, M., & Dietz, K. J. (1997). The plant 2-cys peroxiredoxin BAS1 is a nuclear encoded chloroplast protein: Its expressional regulation, phylogenetic origin, and implications for its specific physiological function in plants. The Plant Journal, 12, 179–190.CrossRefGoogle Scholar
  5. Bittner–Eddy, P. D., Crute, I. R., Holub, E. B., & Beynon, J. L. (2000). RPP13 is a simple locus in Arabidopsis thaliana for alleles that specify downy mildew resistance to different avirulence determinants in Perenospora parasitica. The Plant Journal, 21, 177–188.CrossRefGoogle Scholar
  6. Bolton, M. D. (2009). Primary metabolism and plant-defense-fuel for the fire. Molecular Plant Microbe Interaction, 11, 1196–1206.Google Scholar
  7. Boucher, N., Fait, A., Bouchez, D., Moller, S. G., & Fromm, H. (2003). Mitochondrial SSADH of the GABA shunt is required to restrict levels of reactive oxygen intermediates in plants. Proceedings of the National Academy of Sciences U.S.A, 100, 6843–6848.CrossRefGoogle Scholar
  8. Brotman, Y., Lisec, J., Méret, M., Chet, I., Willmitzer, L., & Viterbo, A. (2012). Transcript and metabolite analysis of the Trichoderma-induced systemic resistance response to Pseudomonas syringae in Arabidopsis thaliana. Microbiology, 158, 139–146.CrossRefGoogle Scholar
  9. Casati, P., Drincovich, M. F., Gerald, E., Edwards, G. E., & Andreo, C. S. (1999). Malate metabolism by NADP-malic enzyme in plant defense. Photosynthesis Research, 61, 99–105.CrossRefGoogle Scholar
  10. Chabannes, M., Barakate, A., Lapierre, C., Marita, J. M., Ralph, J., Pean, M., Danoun, S., Halpin, C., Grima-Pettenati, J., & Boudet, A. M. (2001). Strong decrease in lignin content without significant alteration of plant development is induced by simultaneous down regulation of cinnamoyl CoA reductase (CCR) and cinnamyl alcohol dehydrogenase (CAD) in tobacco plants. The Plant Journal, 28, 257–270.CrossRefGoogle Scholar
  11. Cheng, Q., Li, N., Dong, L., Zhang, D., Fan, S., Jiang, L., Wang, X., Xu, P., & Zhang, P. (2015). Overexpression of soybean Isoflavone reductase (GmIFR) enhances resistance to Phytophthora sojae in soybean. Frontiers in Plant Science, 6, 1024.Google Scholar
  12. Contreras-Cornejo, H. A., Macias-rodriguez, L., Beltran–Pena, E., Herrera– Estrella, A., & Lopez-Bucio, J. (2011). Trichoderma –induced plant immunity likely involves both hormonal and camalexin dependent mechanisms in Arabidopsis thaliana and confers resistance against necrotrophic fungus Botrytis cinerea. Plant Signaling Behaviuor, 6, 1554–1563.CrossRefGoogle Scholar
  13. Dean, J. D., Goodwin, P. H., & Hsiang, T. (2005). Induction of glutathione S-transferase genes of Nicotiana benthamiana following infection by Colletotrichum destructivum and C. orbiculare and involvement of one in resistance. Journal of Experimental Botany, 56, 1525–1533.CrossRefGoogle Scholar
  14. Dhakal, R., Chai, C., Karan, R., Windham, G. L., Williams, W. P., & Subudhi, P. K. (2017). Expression profiling coupled with in-silico mapping identifies candidate genes for reducing aflatoxin accumulation in maize. Frontiers in Plant Science, 8, 503.CrossRefGoogle Scholar
  15. Dixon, D. P., Lapthorn, A., & Edwards, R. (2002). Plant glutathione transferases. Genome Biology, 3, 3004.1–3004.10.CrossRefGoogle Scholar
  16. Dorey, S., Baillieul, F., Saindrenan, P., Fritig, B., & Kauffmann, S. (1998). Spatial and temporal induction of cell death, defense genes, and accumulation of salicylic acid in tobacco leaves reacting hypersensitivity to a fungal glycoprotein elicitor. Molecualr Plant Microbe Interaction, 11, 1102–1109.CrossRefGoogle Scholar
  17. Duijff, B. J., Pouhair, D., Olivain, C., Alabouvette, C., & Lemanceau, P. (1998). Implication of systemic induced resistance in the suppression of fusarium wilt of tomato by Pseudomonas fluorescens WCS417r and by nonpathogenic Fusarium oxysporum Fo47. European Journal of Plant Pathology, 104, 903–910.CrossRefGoogle Scholar
  18. Ezziyyani, M., Requena, M. E., Egea-Gilabert, C., & Candela, M. E. (2007). Biological control of Phytophthora root rot of pepper using Trichoderma harzianum and Streptomyces rochei in combination. Journal of Phytopathology, 155, 342–349.CrossRefGoogle Scholar
  19. Figueiredo, A., Monteiro, F., & Sebastiana, M. (2014). Subtiltisin –like protease in plant pathogen recognition and immune priming- a perspective. Frontiers in Plant Science, 5, 739.CrossRefGoogle Scholar
  20. Gray, W. M., Carlos del Pozo, J., Walker, L., Hobbie, L., Risseeuw, E., Banks, T., Crosby, W. L., Ming Yang, M., Hong Ma, H., & Estelle, M. (1999). Identification of an SCF ubiquitin–ligase complex required for auxin response in Arabidopsis thaliana. Genes and Development, 13, 1678–1691.CrossRefGoogle Scholar
  21. Gullner, G., & Komives, T. (2001). The role of glutathione and glutathione-related enzymes in plant-pathogen interactions. In D. Grill, M. Tausz, & L. Kok (Eds.), Significance of glutathione in plant adaptation to the environment (pp. 207–239). Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
  22. Gupta, M., Yoshioka, H., Ohnishi, K., Mizumoto, H., Yasufumi Hikichi, Y., & Akinori, K. (2013). A translationally controlled tumor protein negatively regulates the hypersensitive response in Nicotiana benthamiana. Plant and Cell Physiology, 54, 1403–1414.CrossRefGoogle Scholar
  23. Han, Y., Mhamdi, A., Chaouch, S., & Noctor, G. (2013). Regulation of basal and oxidative stress-triggered jasmonic acidrelated gene expression by glutathione. Plant Cell & Environment, 36, 1135–1146.CrossRefGoogle Scholar
  24. Harman, G. E., Howell, C. R., Viterbo, A., Chet, I., & Lorito, M. (2004). Trichoderma species-oppurtunistic, avirulent plant symbionts. Nature Reviews Microbiology, 2, 43–56.CrossRefGoogle Scholar
  25. Harris, N., Jane, E., Taylor, J. E., Jeremy, A., & Roberts, J. A. (1997). Characterization and expression of an mRNA encoding a wound-induced (win) protein from ethylene-treated tomato leaf abscission zone tissue. Journal of Experimental Botany, 48, 1223–1227.CrossRefGoogle Scholar
  26. Hodges, M. (2002). Enzyme redundancy and the importance of 2-oxoglutarate in plant ammonium assimilation. Journal of Experimental Botany, 53, 905–916.CrossRefGoogle Scholar
  27. Karolev, N., Rav David, D., & Elad, Y. (2008). The role of phytohormones in basal resisance and Trichoderma- induced resistance to Botrytis cinerea in Arabidopsis thaliana. Biological Control, 53, 667–682.Google Scholar
  28. Kawasaki, T., Koita, H., Nakatsubo, T., Hasegawa, K., Wakabayashi, K., Takahashi, H., Umemura, K., Umezawa, T., & Shimamoto, K. (2006). Cinnamoyl-CoA reductase, a key enzyme in lignin biosynthesis, is an effector of small GTPase Rac in defense signaling in rice. Proceedings of the National Academy of Sciences U.S.A, 103, 230–235.CrossRefGoogle Scholar
  29. Keswani, C., Bisen, K., Singh, S. P., Sarma, B. K., & Singh, H. B. (2016). A proteomic approach to understand the Tripartite interataions between Plant-Trichoderma- Pathogen: Investigating the potential for efficient biological control. In K. R. Hakeem & M. S. Akhtar (Eds.), Plant, Soil and Microbes (pp. 79–93). Switzerland: Springer Publications.CrossRefGoogle Scholar
  30. Khan, J., Ooka, J. J., Miller, S. A., Madden, L. V., & Hoitink, H. A. J. (2004). Systemic resistance induced by Trichoderma hamatum 382 in cucumber against Phytophthora crown rot and leaf blight. Plant Disease, 88, 280–286.CrossRefGoogle Scholar
  31. Kruse, A., Fieuw, S., Heineke, D., & Müller-Röber, B. (1998). Antisense inhibition of cytosolic NADP-dependent isocitrate dehydrogenase in transgenic potato plants. Planta, 205, 82–91.CrossRefGoogle Scholar
  32. Lambrecht, J. A., Schmitz, G. E., & Downs, D. M. (2013). RidA proteins prevent metabolic damage inflicted by PLP-dependent dehydratases in all domains of life. mBio, 4, 00033–00013.CrossRefGoogle Scholar
  33. Less, H., Angelovici, R., Tzin, V., & Galli, G. (2011). Coordinated gene networks regulating Arabidopsis plant metabolism in response to various stresses and nutritional cues. Plant Cell, 23, 1264–1271.CrossRefGoogle Scholar
  34. Lowry, O.H., Rosebrough, N. J., Farr, A. L. & Randal, R. J. (1951). Protein measurement with the folin phenol reagent. The Journal of Biological Chemistry, 193(1), 265–75.Google Scholar
  35. Lu, W., Tang, X., Huo, Y., Xu, R., Qi, S., Huang, J., Zheng, C., & Wu, C. A. (2012). Identification and characterization of FBA genes in Arabidopsis reveal a gene family with diverse response to abiotic stresses. Gene, 503, 65–74.CrossRefGoogle Scholar
  36. Manosalva, P. M., Davidson, R. M., Liu, B., Zhu, X., Hulbert, S. H., Leung, H., & Leach, J. E. (2009). A germin-like protein gene family functions as a complex quantitative trait locus conferring broad-spectrum disease resistance in rice. Plant Physiology, 149, 286–296.CrossRefGoogle Scholar
  37. Marra, R., Ambrosino, P., Carbone, V., Vinale, F., Woo, S. L., Ruocco, M., Ciliento, R., Lanzuise, S., Ferraioli, S., Soriente, I., Gigante, S., Turra, D., Fogliano, V., Scala, F., & Lorito, M. (2006). Study of the three-way interaction between Trichoderma atroviride, plant and fungal pathogens by using a proteomic approach. Current Genetics, 50, 307–321.CrossRefGoogle Scholar
  38. Martinez-Medina, A., Fernandez, I., Sanchez-Guzman, M. J., Jung, S. C., Pascual, J. A., & Pozo, M. J. (2013). Deciphering the hormonal signaling network behind the systemic resistance induced by Trichoderma in tomato. Frontiers in Plant Sciences, 24, 206.Google Scholar
  39. Mathys, J., DeCremer, K., Timmermans, P., VanKerckhove, S., Lievens, B., & Vanhaecke, M. (2012). Genome-wide characterization of ISR induced in Arabidopsis thaliana by Trichoderma hamatum T382 against Botrytis cinerea infection. Frontiers in Plant Sciences, 3, 108.Google Scholar
  40. Mauch, F., & Dudler, R. (1993). Differential induction of distinct glutathione-S-transferases of wheat by xenobiotics and by pathogen attack. Plant Physiology, 102, 1193–1201.CrossRefGoogle Scholar
  41. Mhamdi, A., Mauve, A. C., Gouia, H., Saindrenan, P., Hodges, M., & Noctor, G. (2010). Cytosolic NADP-dependent isocitrate dehydrogenase contributes to redox homeostasis and the regulation of pathogen responses in Arabidopsis leaves. Plant Cell &Environment, 33, 1112–1123.Google Scholar
  42. Niehaus, T. D., Nguyen, T. N. D., Gidda, S. K., ElBadawi-Sidhu, M., Lambrecht, J. A., McCarty, D. R., Downs, D. M., Cooper, A. J. L., Fiehn, O., Mullen, R. T., & Hanson, A. D. (2014). Arabidopsis and maize RidA proteins preempt reactive enamine/imine damage to branched-chain amino acid biosynthesis in plastids. Plant Cell, 26, 3010–3022.CrossRefGoogle Scholar
  43. Paul, D., Saju, K. A., Jisha, P., Sarma, Y. R., Kumar, A., & Anandaraj, M. (2005). Mycolitic enzymes produced by Pseudomonas fluorescens and Trichoderma spp. against Phytophthora capsici, the foot rot pathogen of black pepper (Piper nigrum L.). Annals of Microbiology, 55, 129–133.Google Scholar
  44. Pautot, V., Holzer, F. M., Reisch, B., & Walling, L. L. (1993). Leucine aminopeptidase: An inducible component of the defense response in Lycopersicon esculentum (tomato). Proceedings of the National Academy of Sciences U.S.A, 90, 9906–9910.CrossRefGoogle Scholar
  45. Perazzolli, M., Moretto, M., Fontana, P., Ferrarini, A., Velasco, R., & Moser, C. (2012). Downy mildew resistance induced by Trichoderma harzianum T39 insusceptible grape vines partially mimics transcriptional changes of resistant genotypes. BMC Genomics, 13, 660.CrossRefGoogle Scholar
  46. Rajan, P. P., Sarma, Y. R., & Anandaraj, M. (2002). Management of foot rot disease of black pepper with Trichoderma spp. Indian Phytopathology, 55, 34–38.Google Scholar
  47. Ruegger, M., Dewey, E., Gray, W. M., Hobbie, L., Turner, J., & Estelle, M. (1998). The TIR1 protein of Arabidopsis functions in auxin response and is related to human SKP2 and yeast Grr1p. Genes and Development, 12, 198–207.CrossRefGoogle Scholar
  48. Scandiolios, J. G., Tsaftaris, J. M., Chandlee, T. M., & Skadsen, R. W. (1984). Expression of the developmentally regulated catalase (Cat) genes in maize. Developmental Genetics, 4, 2–293.Google Scholar
  49. Segarra, G., Casanova, E., Bellido, D., Antonia Odena, M., Oliveira, E., & Trillas, I. (2012). Proteome, salicylic acid, and jasmonic acid changes in cucumber plants inoculated with Trichoderma asperellum strain T34. Proteomics, 7, 3943–3952.CrossRefGoogle Scholar
  50. Shigeoka, S., Ishikawa, T., Tamoi, M., Miyagawa, Y., Takeda, T., Yabuta, Y., & Yoshimura, K. (2002). Regulation and function of ascorbate peroxidase isozymes. Journal of Experimental Botany, 53, 1305–1319.CrossRefGoogle Scholar
  51. Shoresh, M., & Harman, G. E. (2008). The molecular basis of shoot responses of maize seedlings to Trichoderma harzianum T22 inoculation of the root: A proteomic approach. Plant Physiology, 147, 2147–2163.CrossRefGoogle Scholar
  52. Shoresh, M., Gal-On, A., Leibman, D., & Chet, I. (2006). Characterization of a mitogen-activated protein kinase gene from cucumber required for Trichoderma -conferred plant resistance. Plant Physiology, 142, 1169–1179.CrossRefGoogle Scholar
  53. Sibi, M. C. (2013). Development of biocontrol consortia for tissue cultured black pepper (Piper nigrum L.,) plants. Mangalore University: Dissertation.Google Scholar
  54. Stammers, D. K., Ren, J., Leslie, K., Nichols, C. E., Lamb, H. K., Cocklin, S., Dodds, A., & Hawkins, A. R. (2001). The structure of the negative transcriptional regulator NmrA reveals a structural superfamily which includes the short chain dehydrogenase/reductases. TheEMBO Journal, 20, 6619–6626.Google Scholar
  55. Stanford, A., Bevan, M., & Northcote, D. (1989). Differential expression within a family of novel wound- induced genes in potato. Molecualr and General Genetics, 215, 200–208.CrossRefGoogle Scholar
  56. Tjamos, S. E., Flemetakis, E., Paplomatas, E. J., & Katinakis, P. (2005). Induction of resistance to Verticillium dahliae in Arabidopsis thaliana by the biocontrol agent K-165 and pathogenesis-related proteins gene expression. Molecular Plant Microbe Interaction, 18, 555–561.CrossRefGoogle Scholar
  57. Umadevi, P., & Anandaraj, M. (2015). An efficient protein extraction method for proteomic analysis of black pepper (Piper nigrum L.) and generation of protein map using nano LC-LTQ Orbitrap mass spectrometry. Plant Omics, 8, 500–507.Google Scholar
  58. Umadevi, P., & Anandaraj, M. (2017). Genotype specific host resistance in blackpepper for Phytophthora. Physiological and Molecular Plant Pathology, 100, 237–241.CrossRefGoogle Scholar
  59. Umadevi, P., Anandaraj, M., & Benjamin, S. (2017a). Endophytic interactions of Trichoderma harzianum in a tropical perennial rhizo – Ecosystem. Research Journal of Biotechnology, 12, 22–30.Google Scholar
  60. Umadevi, P., Anandaraj, M., Srivastav, V., & Benjamin, S. (2017b). Trichoderma harzianum MTCC 5179 impacts the population and functional dynamics of microbial community in the rhizosphere of black pepper (Piper nigrum L.). Brazilian Journal of Micorbiology.
  61. Umadevi, P., Soumya, M., Johnson, K. G., & Anandaraj, M. (2018). Proteomics assisted profiling of anti microbial peptide signatures from black pepper (Piper nigrum L). Physiology and Molecular Biology of Plants, 24, 379–387.CrossRefGoogle Scholar
  62. Vallad, G. E., & Goodman, R. M. (2004). Systemic acquired resistance and induced systemic resistance in conventional agriculture. Crop Science, 44, 1920–1934.CrossRefGoogle Scholar
  63. Velazquez-Robledo, R., Contreras-Cornejo, H. A., Macias- Rodriguez, L., Hernandez-Morals, A., Aguirre, J., Casas-Flores, S., Lopez-Bucio, J., & Herrera- Estrella, A. (2011). Role of the 4- phosphopantetheinyl transferase of Trichoderma virens in secondary metabolism and induction of plant defense responses. American Phytopathological Society, 24, 1459–1471.Google Scholar
  64. Waller, F., Achatz, B., Baltruschat, H., Fodor, J., Becker, K., & Fischer, M. (2005). The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proceedings of the National Academy of Sciences U.S.A., 102, 13386–13391.CrossRefGoogle Scholar
  65. Xing, T., Rampitsch, C., Sun, S., Romanowski, A., Conroy, C., Stebbing, J. A., & Wang, X. (2008). TAB2, a nucleoside diphosphate protein kinase, is a component of the tMEK2 disease resistance pathway in tomato. Physiological and Molecular Plant Pathology, 73, 33–39.CrossRefGoogle Scholar
  66. Yedidia, I., Shoresh, M., Kerem, Z., Ben-hamou, N., Kapulnik, Y., & Chet, I. (2003). Concomitant induction of systemic resistance to Pseudomonas syringae pv. lachrymans in cucumber by Trichoderma asperellum (T-203) and accumulation of phytoalexins. Applied and Environmental Microbiology, 69, 7343–7373.CrossRefGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2019

Authors and Affiliations

  1. 1.ICAR- Indian Institute of Spices ResearchKozhikodeIndia

Personalised recommendations