Advertisement

Suppression of Fusarium wilt of banana by combining acid soil ameliorant with biofertilizer made from Bacillus velezensis H-6

  • Jianfeng Huang
  • Yuwan PangEmail author
  • Fabao Zhang
  • Qiaoyi Huang
  • Mu Zhang
  • Shuanhu Tang
  • Hongting Fu
  • Ping Li
Article
  • 19 Downloads

Abstract

Fusarium wilt is one of the most serious banana diseases. It is caused by the soil-borne pathogen Fusarium oxysporum f. sp. cubense (Foc). The key accepted reasons for disease break-outs are the increasing number of pathogens in soil and gradual soil acidification according to published reports. Few studies have reported management methods to control these two aspects at the same time. In this study, a novel improved biological control method, combined acid soil ameliorant (ASA) with biofertilizer (BIO), was applied to manage Fusarium wilt under greenhouse conditions. A biocontrol agent, Bacillus velezensis H-6, was isolated and used for producing biofertilizer BIO6 for pot experiments. Combined ASA with BIO6 (treatments OBIO6 and ABIO6) showed greater biocontrol efficacy compared with individual treatments by 63.3% and 66.7%, respectively. They also increased rhizosphere soil pH from 4.50 to 4.89 and 5.52, respectively. Correlation analysis showed that the Foc population and Fusarium wilt disease incidence (DI) were both significantly (P < 0.05) negatively correlated with ∆pH in the rhizosphere, contents of NH4-N and organic matter (OM), and populations of bacteria and actinomycetes. Furthermore, ∆pH was significantly positively correlated with content of OM and populations of bacteria and actinomycetes, while it was negatively correlated with content of NO3-N and population of fungi. In conclusion, our novel improved biological control method revealed a greater potential to control Fusarium wilt of banana, and the effect might be a result of improving soil acid-alkali conditions to decrease the density of pathogen and manipulating the soil microbial community.

Keywords

Fusarium wilt of banana Biological control Acid soil ameliorant Biofertilizer Soil property Soil microbial community 

Notes

Acknowledgements

The study was financially supported by Science and Technology Planning Project of Guangdong Province (2015A020209053 and 2015B020237007), National Key Research and Development Plan (2016YFD0800600), and Special Fund for Agro-scientific Research in the Public Interest of China (201003016).

Compliance with ethical standards

The authors declare that the research complies with ethical standards.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10658_2019_1683_MOESM1_ESM.doc (12 kb)
ESM 1 (DOC 12 kb)
10658_2019_1683_MOESM2_ESM.doc (876 kb)
Figure S1 (DOC 876 kb)

References

  1. Abriouel, H., Franz, C. M. A. P., Omar, N. B., & Gálvez, A. (2011). Diversity and applications of Bacillus bacteriocins. FEMS Microbiology Reviews, 35, 201–232.CrossRefGoogle Scholar
  2. Alabouvette, C. (1999). Fusarium wilt suppressive soils: An example of disease-suppressive soils. Australasian Plant Pathology, 28, 57–64.CrossRefGoogle Scholar
  3. Badri, D. V., & Vivanco, J. M. (2009). Regulation and function of root exudates. Plant, Cell & Environment, 32, 666–681.CrossRefGoogle Scholar
  4. Bever, J. D., Platt, T. G., & Morton, E. R. (2012). Microbial population and community dynamics on plant roots and their feedbacks on plant communities. Annual Review of Microbiology, 66, 265–283.CrossRefGoogle Scholar
  5. Blaya, J., Lloret, E., Ros, M., & Pascual, J. A. (2015). Identification of predictor parameters to determine agro-industrial compost suppressiveness against Fusarium oxysporum and Phytophthora capsici diseases in muskmelon and pepper seedlings. Journal of the Science of Food and Agriculture, 95, 1482–1490.CrossRefGoogle Scholar
  6. Butler, D. (2013). Fungus threatens top banana. Nature, 504, 195–196.CrossRefGoogle Scholar
  7. Cao, Y., Wang, J. D., Wu, H. S., Yan, S. H., Guo, D. J., Wang, G. F., & Ma, Y. (2016). Soil chemical and microbial responses to biogas slurry amendment and its effect on Fusarium wilt suppression. Applied Soil Ecology, 107, 116–123.CrossRefGoogle Scholar
  8. Caracuel, Z., Roncero, M. I. G., Espeso, E. A., González-Verdejo, C. I., García-Maceira, F. I., & Pietro, A. D. (2003). The pH signalling transcription factor PacC controls virulence in the plant pathogen Fusarium oxysporum. Molecular Microbiology, 48, 765–779.CrossRefGoogle Scholar
  9. Cavaglieri, L., Orlando, J., Rodriguez, M. I., Chulze, S., & Etcheverry, M. (2005). Biocontrol of Bacillus subtilis against Fusarium verticillioides in vitro and at the maize root level. Research in Microbiology, 156, 748–754.CrossRefGoogle Scholar
  10. Chen, Y. F., Chen, W., Huang, X., Hu, X., Zhao, J. T., Gong, Q., Li, X. J., & Huang, X. L. (2013). Fusarium wilt-resistant lines of Brazil banana (Musa spp., AAA) obtained by EMS-induced mutation in a micro-cross-section cultural system. Plant Pathology, 62, 112–119.CrossRefGoogle Scholar
  11. Deltour, P., França, S. C., Pereira, O. L., Cardoso, I., Neve, S. D., Debode, J., & Höfte, M. (2017). Disease suppressiveness to Fusarium wilt of banana in an agroforestry system: Influence of soil characteristics and plant community. Agriculture, Ecosystems & Environment, 239, 173–181.CrossRefGoogle Scholar
  12. Domínguez, J., Negrín, M. A., & Rodríguez, C. M. (1996). Soil chemical characteristics in relation to Fusarium wilts in banana crops of Gran Canaria Island (Spain). Communications in Soil Science and Plant Analysis, 27, 2649–2662.CrossRefGoogle Scholar
  13. El-Hassan, S. A., & Gowen, S. R. (2006). Formulation and delivery of the bacterial antagonist Bacillus subtilis for management of lentil vascular wilt caused by Fusarium oxysporum f. Sp. lentis. Journal of Phytopathology, 154, 148–155.CrossRefGoogle Scholar
  14. Fan, X. L., & Li, J. (2014). Effectiveness of alkaline fertilizer on the control of banana Fusarium wilt and regulation of soil acidity in banana orchard. Journal of Plant Nutrition and Fertilization, 20, 938–946.Google Scholar
  15. Fang, X. L., You, M. P., & Barbetti, M. J. (2012). Reduced severity and impact of Fusarium wilt on strawberry by manipulation of soil pH, soil organic amendments and crop rotation. European Journal of Plant Pathology, 134, 619–629.CrossRefGoogle Scholar
  16. Fu, L., Penton, C. R., Ruan, Y. Z., Shen, Z. Z., Xue, C., Li, R., & Shen, Q. R. (2017). Inducing the rhizosphere microbiome by biofertilizer application to suppress banana Fusarium wilt disease. Soil Biology and Biochemistry, 104, 39–48.CrossRefGoogle Scholar
  17. Gao, Z. F., Zhang, B. J., Liu, H. P., Han, J. C., & Zhang, Y. J. (2017). Identification of endophytic Bacillus velezensis ZSY-1 strain and antifungal activity of its volatile compounds against Alternaria solani and Botrytis cinerea. Biological Control, 105, 27–39.CrossRefGoogle Scholar
  18. Garbeva, P., Postma, J., van Veen, J. A., & van Elsas, J. D. (2006). Effect of above-ground plant species on soil microbial community structure and its impact on suppression of Rhizoctonia solani AG3. Environmental Microbiology, 8, 233–246.CrossRefGoogle Scholar
  19. Ghorbani, R., Wilcockson, S., Koocheki, A., & Leifert, C. (2008). Soil management for sustainable crop disease control: A review. Environmental Chemistry Letters, 6, 149–162.CrossRefGoogle Scholar
  20. Huang, J. L., Li, H. L., & Yuan, H. X. (2006). Effect of organic amendments on Verticillium wilt of cotton. Crop Protection, 25, 1167–1173.CrossRefGoogle Scholar
  21. Huang, J. F., Wei, Z., Hu, J., Yang, C. L., Gu, Y., Mei, X. L., Shen, Q. R., Xu, Y. C., & Riaz, K. (2017a). Chryseobacterium nankingense sp. nov. WR21 effectively suppresses Ralstonia solanacearum growth via intensive root exudates competition. BioControl, 62, 567–577.CrossRefGoogle Scholar
  22. Huang, Q. Y., Tang, S. H., Huang, X., Zhang, F. B., Yi, Q., Li, P., & Fu, H. T. (2017b). Influence of rice cultivation on the abundance and fractionation of Fe, Mn, Zn, Cu, and Al in acid sulfate paddy soils in the Pearl River Delta. Chemical Geology, 448, 93–99.CrossRefGoogle Scholar
  23. Jetiyanon, K., & Kloepper, J. W. (2002). Mixtures of plant growth-promoting rhizobacteria for induction of systemic resistance against multiple plant diseases. Biological Control, 24, 285–291.CrossRefGoogle Scholar
  24. Komada, H. (1975). Development of a selective medium for quantitative isolation of Fusarium oxysporum from natural soil. Review of Plant Protection Research, 8, 114–125.Google Scholar
  25. Lang, J. J., Hu, J., Ran, W., Xu, Y. C., & Shen, Q. R. (2011). Control of cotton Verticillium wilt and fungal diversity of rhizosphere soils by bio-organic fertilizer. Biology and Fertility of Soils, 48, 191–203.CrossRefGoogle Scholar
  26. Lee, H.-H., Park, J., Lim, J. Y., Kim, H., Choi, G. J., Kim, J. C., & Seo, Y. S. (2015). Complete genome sequence of Bacillus velezensis G341, a strain with a broad inhibitory spectrum against plant pathogens. Journal of Biotechnology, 211, 97–98.CrossRefGoogle Scholar
  27. Lievens, B., Brouwer, M., Vanachter, A. C. R. C., Lévesque, C. A., Cammue, B., & Thomma, B. (2005). Quantitative assessment of phytopathogenic fungi in various substrates using a DNA macroarray. Environmental Microbiology, 7, 1698–1710.CrossRefGoogle Scholar
  28. Ling, N., Xue, C., Huang, Q. W., Yang, X. M., Xu, Y. C., & Shen, Q. R. (2010). Development of a mode of application of bioorganic fertilizer for improving the biocontrol efficacy to Fusarium wilt. BioControl, 55, 673–683.CrossRefGoogle Scholar
  29. Liu, Y. X., Shi, J. X., Feng, Y. G., Yang, X. M., Li, X., & Shen, Q. R. (2013). Tobacco bacterial wilt can be biologically controlled by the application of antagonistic strains in combination with organic fertilizer. Biology and Fertility of Soils, 49, 447–464.CrossRefGoogle Scholar
  30. Mak, C., Mohamed, A. A., Liew, K. W., & Ho, Y. W. (2004). Early screening technique for fusarium wilt resistance in banana micropropagated plants. Banana Improvement, 18, 219–227.Google Scholar
  31. Manikandan, R., Karthikeyan, G., & Raguchander, T. (2017). Soil proteomics for exploitation of microbial diversity in Fusarium wilt infected and healthy rhizosphere soils of tomato. Physiological and Molecular Plant Pathology, 100, 185–193.CrossRefGoogle Scholar
  32. Meng, Q. X., & Hao, J. J. J. (2017). Optimizing the application of Bacillus velezensis BAC03 in controlling the disease caused by Streptomyces scabies. BioControl, 62, 535–544.CrossRefGoogle Scholar
  33. Muyzer, G., Waal, E. C. D., & Uitierlinden, A. G. (1993). Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Applied and Environmental Microbiology, 59, 695–700.Google Scholar
  34. Nel, B., Steinberg, C., Labuschagne, N., & Viljoen, A. (2007). Evaluation of fungicides and sterilants for potential application in the management of Fusarium wilt of banana. Crop Protection, 26, 697–705.CrossRefGoogle Scholar
  35. Ploetz, R. C. (2006). Fusarium-induced diseases of tropical, perennial crops. Phytopathology, 96, 648–652.CrossRefGoogle Scholar
  36. Qiu, M. H., Zhang, R. F., Xue, C., Zhang, S. S., Li, S. Q., Zhang, N., & Shen, Q. R. (2012). Application of bio-organic fertilizer can control Fusarium wilt of cucumber plants by regulating microbial community of rhizosphere soil. Biology and Fertility of Soils, 48, 807–816.CrossRefGoogle Scholar
  37. Roh, J. Y., Liu, Q., Choi, J. Y., Wang, Y., Shim, H. J., Xu, H. G., Choi, G. J., Kim, J.-C., & Je, Y. H. (2009). Construction of a recombinant Bacillus velezensis strain as an integrated control agent against plant diseases and insect pests. Journal of Microbiology and Biotechnology, 19, 1223–1229.CrossRefGoogle Scholar
  38. Rotenberg, D., Wells, A. J., Chapman, E. J., Whitfield, A. E., Goodman, R. M., & Cooperband, L. R. (2007). Soil properties associated with organic matter-mediated suppression of bean root rot in field soil amended with fresh and composted paper mill residuals. Soil Biology and Biochemistry, 39, 2936–2948.CrossRefGoogle Scholar
  39. Saravanan, T., Muthusamy, M., & Marimuthu, T. (2003). Development of integrated approach to manage the fusarial wilt of banana. Crop Protection, 22, 1117–1123.CrossRefGoogle Scholar
  40. Shen, Z. Z., Wang, D. S., Ruan, Y. Z., Xue, C., Zhang, J., Li, R., & Shen, Q. R. (2014). Deep 16S rRNA pyrosequencing reveals a bacterial community associated with Banana Fusarium Wilt disease suppression induced by bio-organic fertilizer application. PLoS One, 9, e98420.CrossRefGoogle Scholar
  41. Shen, Z. Z., Ruan, Y. Z., Wang, B. B., Zhong, S. T., Su, L. X., Li, R., & Shen, Q. R. (2015). Effect of biofertilizer for suppressing Fusarium wilt disease of banana as well as enhancing microbial and chemical properties of soil under greenhouse trial. Applied Soil Ecology, 93, 111–119.CrossRefGoogle Scholar
  42. Song, S., Chen, X., Huang, D. M., Xu, Y., Zeng, H. C., Hu, X. W., Xu, B. Y., Jin, Z. Q., & Wang, W. Q. (2016). Identification of miRNAs differentially expressed in Fusarium wilt-resistant and susceptible banana varieties. South African Journal of Botany, 106, 244–249.CrossRefGoogle Scholar
  43. Sun, J. B., Zou, L. P., Li, W. B., Yang, J. H., Wang, Y. G., Xia, Q. Y., & Peng, M. (2018). Rhizosphere soil properties and banana Fusarium wilt suppression influenced by combined chemical and organic fertilizations. Agriculture, Ecosystems & Environment, 254, 60–68.CrossRefGoogle Scholar
  44. Taubenhaus, J. J., Ezekiel, W. N., & Killough, D. T. (1928). Relation of cotton root rot and fusarium wilt to the acidity and alkalinity of the soil. Bulletin, 389, 1–19.Google Scholar
  45. Wang, B. B., Li, R., Ruan, Y. Z., Ou, Y. N., Zhao, Y., & Shen, Q. R. (2015). Pineapple-banana rotation reduced the amount of Fusarium oxysporum more than maize-banana rotation mainly through modulating fungal communities. Soil Biology and Biochemistry, 86, 77–86.CrossRefGoogle Scholar
  46. Xiong, W., Li, R., Ren, Y., Liu, C., Zhao, Q. Y., Wu, H. S., Jousset, A., & Shen, Q. R. (2017). Distinct roles for soil fungal and bacterial communities associated with the suppression of vanilla Fusarium wilt disease. Soil Biology and Biochemistry, 107, 198–207.CrossRefGoogle Scholar
  47. Xu, L. B., Huang, B. Z., Wu, Y. L., Huang, Y. H., & Dong, T. (2011). The cost-benefit analysis for bananas diversity production in China Foc. Zones. American Journal of Plant Science, 2, 561–568.CrossRefGoogle Scholar
  48. Zelenev, V. V., van Bruggen, A. H., & Semenov, A. M. (2005). Short-term wavelike dynamics of bacterial populations in response to nutrient input from fresh plant residues. Microbial Ecology, 49, 83–93.CrossRefGoogle Scholar
  49. Zhang, N., He, X., Zhang, J., Raza, W., Yang, X. M., Ruan, Y. Z., Shen, Q. R., & Huang, Q. W. (2014). Suppression of Fusarium wilt of banana with application of bio-organic fertilizers. Pedosphere, 24, 613–624.CrossRefGoogle Scholar
  50. Zhao, J., Dong, Y., Xie, X. B., Li, X., Zhang, X. X., & Shen, X. (2011). Effect of annual variation in soil pH on available soil nutrients in pear orchards. Acta Ecologica Sinica, 31, 212–216.CrossRefGoogle Scholar
  51. Zhu, Q. C., de Vries, W., Liu, X. J., Hao, T. X., Zeng, M. F., Shen, J. B., & Zhang, F. S. (2018). Enhanced acidification in Chinese croplands as derived from element budgets in the period 1980-2010. Science of the Total Environment, 618, 1497–1505.CrossRefGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2019

Authors and Affiliations

  • Jianfeng Huang
    • 1
    • 2
    • 3
  • Yuwan Pang
    • 1
    • 2
    • 3
    Email author
  • Fabao Zhang
    • 1
    • 2
    • 3
  • Qiaoyi Huang
    • 1
    • 2
    • 3
  • Mu Zhang
    • 1
    • 2
    • 3
  • Shuanhu Tang
    • 1
    • 2
    • 3
  • Hongting Fu
    • 1
    • 2
    • 3
  • Ping Li
    • 1
    • 2
    • 3
  1. 1.Institute of Agricultural Resources and EnvironmentGuangdong Academy of Agricultural SciencesGuangzhouChina
  2. 2.Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of AgricultureGuangzhouChina
  3. 3.Guangdong Key Laboratory of Nutrient Cycling and Farmland ConservationGuangzhouChina

Personalised recommendations