European Journal of Plant Pathology

, Volume 153, Issue 3, pp 837–847 | Cite as

Citrus rootstock breeding: response of four allotetraploid somatic hybrids to Citrus tristeza virus induced infections

  • Loredana Abbate
  • Stefano Panno
  • Francesco MercatiEmail author
  • Salvatore Davino
  • Sergio Fatta Del Bosco


Four allotetraploid somatic hybrids of citrus, with potential for rootstock improvement, have been evaluated for their response to Citrus tristeza virus (CTV) infection. CTV is the most important viral pathogen affecting citrus production worldwide. Somatic combinations of ‘Milam’ lemon (Citrus jambhiri Lush.) + Sour orange (C. aurantium L Osb.), Calamondin (C. madurensis Lour.) + ‘Keen’ sour orange (C. aurantium L.), Calamondin + ‘Femminello‘ lemon (C. limon L. Burm. F.) and Cleopatra mandarin (C. reshni Hort. ex Tan.) + ‘Femminello’ lemon, were studied. Plants were grafted with CTV-infected “Valencia” sweet orange budwood. Two different CTV strains collected in Sicily, considered as “mild” and “severe”, were used to inoculate candidate rootstocks. The goal of this work is to select a rootstock alternative to CTV susceptible Sour orange, still the prevalent rootstock in the Mediterranean basin. DAS-ELISA and real-time PCR assays confirmed a decreased level of viral replication in tested somatic hybrids, as compared to the susceptible genotypes sour orange and Citrus alemow. The Calamondin+‘Keen’ sour orange genotype did not support any replication in either CTV strain. Somatic hybridization is confirmed to be an effective tool to obtain functionally new rootstocks. Our results can be considered a starting point to open new approaches for the Mediterranean citrus industry. Indeed, the four somatic hybrids have been propagated for agronomical multisite evaluation trials to further assess if their horticultural performance, fruit holding capacity, and soil adaptation are adequate to replace sour orange.


CTV Protoplast fusion Rootstocks DAS-ELISA RT-PCR Real-time qRT-PCR 



The authors wish to thank Mr. Antonio Motisi (IBBR-CNR, Palermo) for skillful technical assistance.

Author’s contribution

All the authors conceived and designed the experiments. LA and SP carried out the experiments. LA developed the plant materials. SP performed the molecular analysis. LA, FM, SD and SFDB commented the results. FM and SFDB drafted the manuscript. All the authors critically read and approved the final manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The experiments were performed in compliance with the European current laws.

Supplementary material

10658_2018_1599_MOESM1_ESM.docx (200 kb)
ESM 1 (DOCX 200 kb)
10658_2018_1599_MOESM2_ESM.docx (19 kb)
ESM 2 (DOCX 19 kb)
10658_2018_1599_MOESM3_ESM.docx (21 kb)
ESM 3 (DOCX 20 kb)


  1. Allario, T., Brumos, J., Colmenero, J. M., Domingo, I., José, J., Antonio, P. J., et al. (2009). Autotetraploid Citrus limonia rootstocks are more tolerant to water deficit than parental diploids. Intern Confon Polyploidy, Hybrid and Biodivers, May 17–20, 2009, Saint-Malo France, program and abstracts. Rennes: Universite de Rennes, 1, 98.Google Scholar
  2. Bar-Joseph, M., Marcus, R., & Lee, R. F. (1989). The continuous challenge of citrus tristeza virus control. Ann Rev Phyroparhol, 27, 291–316.CrossRefGoogle Scholar
  3. Bertolini, E., Moreno, A., Capote, N., Olmos, A., de Luis, A., Vidal, E., Pérez-Panadés, J., & Cambra, M. (2008). Quantitative detection of Citrus tristeza virus in plant tissues and single aphids by real-time RT-PCR. European Journal of Plant Pathology, 120, 177–188.CrossRefGoogle Scholar
  4. Cambra, M., Garnsey, S. M., Permar, T. A., Henderson, C. T., Gumpf, D. J., & Vela, C. (1990). Detection of Citrus tristeza virus (CTV) with a mixture of monoclonal antibodies. Phytopathol, 80, 1034.Google Scholar
  5. Cambra, M., Gorris, M. T., Olmos, A., Martínez, M. C., Romàn, M. P., Bertolini, E., et al. (2002). European diagnostic protocols (DIAGPRO) for Citrus tristeza virus in adult trees. In N. Duran-Vila, R. G. Milne, & J. V. da Graça (Eds.), Proc of the 15th Conf of the Intern Organ of Citrus Virol IOCV (pp. 69–77). CA: Riverside.Google Scholar
  6. Castle, W. S. (1987). Citrus rootstocks. In R. C. Rom & R. F. Carlson (Eds.), Rootstocks for fruit crops (pp. 361–399). NY: Wiley.Google Scholar
  7. Castle, W. S. (1995). Rootstock as a fruit quality factor in citrus and deciduous tree crops. New Zeal J Crop Hort, 33, 383–394.CrossRefGoogle Scholar
  8. Castle, W. S. (2010). A career perspective on citrus rootstocks, their development, and commercialization. Hortscience, 45, 11–15.CrossRefGoogle Scholar
  9. Chen, Z. J. (2010). Molecular mechanisms of polyploidy and hybrid vigor. Trends in Plant Science, 15, 57–71.CrossRefGoogle Scholar
  10. Clark, M. F., & Adams, A. M. (1977). Characteristics of the microplate method of enzyme-linked immunosorbent assay for the detection of plant viruses. The Journal of General Virology, 34, 475–483.CrossRefGoogle Scholar
  11. Coletta-Filho, H. D., Carlos, E. F., Alves, K. C. S., Pereira, M. A. R., Boscariol-Camargo, R. L., de Souza, A. A., & Machado, M. A. (2010). In planta multiplication and graft transmission of “Candidatus Liberibacter asiaticus” revealed by real-time PCR. European Journal of Plant Pathology, 126(1), 53–60.CrossRefGoogle Scholar
  12. Dambier, D., Benyahia, H., Pensabene-Bellavia, G., Kacar, Y. A., Froelicher, Y., Belfalah, Z., et al. (2011). Somatic hybridization for citrus rootstock breeding: An effective tool to solve some important issues of the Mediterranean citrus industry. Plant Cell Reports, 30, 883–900.CrossRefGoogle Scholar
  13. Davey, M., Anthony, P., Power, J., & Lowe, K. (2005). Plant protoplasts: Status and biotechnological perspectives. Biotechnology Advances, 23, 131–171.CrossRefGoogle Scholar
  14. Davino, S., Rubio, L., & Davino, M. (2005). Molecular analysis suggests that recent Citrus tristeza virus outbreaks in Italy were originated by at least two independent introductions. European Journal of Plant Pathology, 111(3), 289–293.CrossRefGoogle Scholar
  15. Davino, S., Willemsen, A., Panno, S., Davino, M., Catara, A., Santiago, F. E., et al. (2013). Emergence and Phylodynamics of Citrus tristeza virus in Sicily, Italy. PLoS One, 8(6), e66700.CrossRefGoogle Scholar
  16. Dubey, A. K., & Sharma, R. M. (2016). Effect of rootstocks on tree growth, yield, quality and leaf mineral composition of lemon (Citrus limon (L.) Burm.). Scientia Horticulturae, 200, 131–136.CrossRefGoogle Scholar
  17. Eeckhaut, T., Shankar Lakshmanan, P., Deryckere, D., Van Bockstaele, E., & Van Huylenbroeck, J. (2013). Progress in plant protoplast research. Planta, 238, 991–1003.CrossRefGoogle Scholar
  18. EPPO (2009). EPPO Reporting Service n. 1, 2, 3, 6, 8, 9, 10, 11. [accessed on 10 February 2012].Google Scholar
  19. Etebu, E., & Nwauzoma, A. B. (2014). A review on sweet orange (Citrus sinensis L. Osb.): Health, diseases and management. Am J of Res Comm, 2(2), 33–70.Google Scholar
  20. Fatta Del Bosco, S., Abbate, L., Tusa, N., Strano, T., Renda, A., & Ruberto, G. (2013). Genetic improvement of Citrus fruits: The essential oil profiles in a Citrus Limon backcross progeny derived from somatic hybridization. Food Research International, 50(1), 344–350.CrossRefGoogle Scholar
  21. Fatta Del Bosco, S., Napoli, E., Mercati, F., Abbate, L., Carimi, F., & Ruberto, G. (2017). Somatic cybridization for Citrus: Polyphenols distribution in juices and peel essential oil composition of a diploid cybrid from Cleopatra mandarin (Citrus reshni Hort. Ex tan.) and sour orange (Citrus aurantium L.). Genet Resour Crop Ev, 64(2), 261–275.CrossRefGoogle Scholar
  22. Folimonova, S. Y., Robertson, C. J., Garnsey, S. M., Gowda, S., & Dawson, W. O. (2009). Examination of the responses of different genotypes of citrus to huanglongbing (Citrus greening) under different conditions. Phytopathology, 99, 1346–1354.CrossRefGoogle Scholar
  23. Garnsey, M., Gumpf, S. M., Roistacher, D. J., Civerolo, C. N., Lee, E. L., Yokomi, R. F., et al. (1987). Toward a standardized evaluation of the biological properties of citrus tristeza virus. Phytophylactica, 19, 151–158.Google Scholar
  24. Grosser, J. W., Chandler, J. L. (2003) New Citrus rootstock via protoplast fusion. Acta Hort ic 622, 491-497.Google Scholar
  25. Grosser, J. W., & Gmitter, F. G. J. (2005). SIVB congress symposium proceedings thinking outside the cell-applications of somatic hybridization and cybridization in crop improvement, with citrus as a model. Vitro Cell Dev Plant, 41, 220–225.CrossRefGoogle Scholar
  26. Grosser, J. W., & Gmitter Jr., F. G. (1990). Protoplast fusion and citrus improvement. Plant Breed Rev 8. Timber Press Inc, 8, 339–374.Google Scholar
  27. Grosser, J. W., & Gmitter Jr., F. J. (2011). Protoplast fusion for production of tetraploids and triploids: Applications for scion and rootstock breeding in citrus. Plant Cell, Tissue and Organ Culture, 104, 343–357.CrossRefGoogle Scholar
  28. Grosser, J. W., Gmitter Jr., F. G., & Castle, W. S. (1995). Production and evaluation of citrus somatic hybrid rootstocks. Prog Rep Proc Fla State Hort Soc, 108, 140–143.Google Scholar
  29. Grosser, J. W., Gmitter, F. J. J., Tusa, N., Reforgiato Recupero, G., & Cucinotta, P. (1996). Further evidence of a cybridization requirement for plant regeneration from citrus leaf protoplasts following somatic fusion. Plant Cell Reports, 15, 672–676.CrossRefGoogle Scholar
  30. Grosser, J. W., Ollitrault, P., & Olivares-Fuster, O. (2000). Invited review: Somatic hybridization in citrus: An effective tool to facilitate variety improvement. Vitro Cell Dev Biol Plant, 36, 434–449.CrossRefGoogle Scholar
  31. Grosser, J. W., Chandler, J. L. (2003) New Citrus rootstock via protoplast fusion. Acta Hortic, 622, 491–497.Google Scholar
  32. Grosser, J. W., Medina-Urrutia, V., Ananthakrishnam, G., & Serrano, P. (2004). Building a replacement sour orange rootstock: Somatic hybridization of selected mandarin + Pummelo combinations. J Am Soc Hortic Sci, 129, 530–534.CrossRefGoogle Scholar
  33. Grosser, J. W., Chandler, J. L., & Duncan, L. W. (2007). Production of mandarin+pummelo somatic hybrid citrus rootstocks with potential for improved tolerance/resistance to sting nematode. Scientia Horticulturae, 113, 33–36.CrossRefGoogle Scholar
  34. Guo, W. W., Wu, R. C., Cheng, Y. J., & Deng, X. X. (2008). Regeneration and molecular characterization of two interspecific somatic hybrids of Citrus for potential rootstock improvement. The Journal of Horticultural Science and Biotechnology, 83, 407–410.CrossRefGoogle Scholar
  35. Hodgson, R. W. (1967). Horticultural varieties of citrus. In W. Reuther, H. J. Webber, & L. D. Batchelor (Eds.), The citrus ind 1 (pp. 431–591). Riverside: University of California.Google Scholar
  36. Husband, B. C., Baldwin, S. J., Suda, J. (2013). The incidence of polyploidy in natural plant populations: Major patterns and evolutionary processes. In: Greilhuber J., Dolezel J., Wendel J.F. (Eds.), Plant Genome Divers, Volume 2. Springer, Vienna. Google Scholar
  37. Hussain, S., Curk, F., Dhuique-Mayer, C., Urban, L., Ollitrault, P., Luro, F., & Morillon, R. (2012). Autotetraploid trifoliate orange (Poncirus trifoliata) rootstocks do not impact clementine quality but reduce fruit yields and highly modify rootstock/scion physiology. Scientia Horticulturae, 134, 100–107.CrossRefGoogle Scholar
  38. Jannati, M., Fotouhi, R., Abad, A. P., & Salehi, Z. (2009). Genetic diversity analysis of Iranian citrus varieties using micro satellite (SSR) based markers. J Hortic For, 1(7), 120–125.Google Scholar
  39. Johnson, A. A. T., & Veilleux, R. E. (2001). Somatic hybridization and application in plant breeding. Plant Breed Rev, 20, 167–225.Google Scholar
  40. Louzada, E. S., Grosser, J. W., Gmitter Jr., F. G., Nielsen, B., Chandler, J. L., Deng, X. X., et al. (1992). Eight new somatic hybrid Citrus with potential for improved disease resistance. Horticultural Science, 27(9), 1033–1036.Google Scholar
  41. Mathews, D. M., Riley, K., & Dodds, J. A. (1997). Comparison of detection methods for citrus tristeza virus in field trees during months of nonoptimal titer. Plant Disease, 81, 525–529.CrossRefGoogle Scholar
  42. Mendes da Gloria, F. J., Mourao Filho, F. A. A., Camargo, L. E. A., & Mendes, B. M. J. (2000). Caipira sweet orange+Rangpur lime: A somatic hybrid with potential for use as rootstock in the Brazilian Citrus industry. Genetics and Molecular Biology, 23, 661–665.CrossRefGoogle Scholar
  43. Mercati, F., Riccardi, P., Leebens-Mack, J., Abenavoli, M. R., Falavigna, A., & Sunseri, F. (2013). Single nucleotide polymorphism isolated from a novel EST dataset in garden asparagus (Asparagus officinalis L.). Plant Science, 203, 115–123.CrossRefGoogle Scholar
  44. Mourao Filho, F. A. A., Pio, R., Jannuzzi Mendes, B. M., de Azavedo, F. A., Schinor, E. H., Albuquerque Entelmann, F., et al. (2008). Evaluation of citrus somatic hybrids for tolerance to Phytophthora nicotianae and to citrus tristeza virus. Scientia Horticulturae, 115, 301–308.CrossRefGoogle Scholar
  45. Napoli, E., Ruberto, G., Abbate, L., Mercati, F., Del Bosco, S. F. (2016). Citrus genetic improvement: New citrus hybrids from breeding procedures and evaluation of their genetic and phytochemical aspects. In: Simmons D. (Ed), Citrus fruits: production, consumption and health benefits. Nova Science Publishers, Incorporated. Google Scholar
  46. Ollitrault, P., & Navarro, L. (2012). Citrus. In M. Badenes & D. Byrne (Eds.), Fruit breeding. Handbook of plant breeding (Vol. 8, pp. 623–662). Boston: Springer.Google Scholar
  47. Ollitrault, P., Froelicher, Y., Dambier, D., Seker, M. (2000). Rootstock Breeding by somatic hybridization for the Mediterranean Citrus industry. ISHS Acta Hort 535: First International Citrus Biotechnology Symposium.Google Scholar
  48. Osman, F., Hodzic, E., Kwon, S. J., Wang, J., & Vidalakis, G. (2015). Development and validation of a multiplex reverse transcription quantitative PCR (RT-qPCR) assay for the rapid detection of Citrus tristeza virus, Citrus psorosis virus, and Citrus leaf blotch virus. Journal of Virological Methods, 220, 64–75.CrossRefGoogle Scholar
  49. Otto, S. P., & Whitton, J. (2000). Polyploid incidence and evolution. Annual Review of Genetics, 34, 401–437.CrossRefGoogle Scholar
  50. Pereira de Carvalho Costa, M. A., Mendes, B. M. J., & Mourao Filho, F. A. A. (2003). Somatic hybridization for improvement of citrus rootstock: Production of five new combinations with potential for improved disease resistance. Australian Journal of Experimental Agriculture, 43, 1151–1156.CrossRefGoogle Scholar
  51. Roistacher, C. N. (1993). Psorosis a review. In: Proocedings of the 12 th Conference of the International Organization of Citrus Virologists, 1192(1), 139–154.Google Scholar
  52. Rubio, L., Ayllon, M., Guerri, J., Pappu, H., Niblett, C., & Moreno, P. (1996). Differentiation of Citrus tristeza closterovirus (CTV) isolates by single-strand conformation polymorphism analysis of the coat protein gene. The Annals of Applied Biology, 129, 479–489.CrossRefGoogle Scholar
  53. Ruiz-Ruiz, S., Moreno, P., Guerri, J., & Ambrós, S. (2007). A real-time RT-PCR assay for detection and absolute quantitation of Citrus tristeza virus in different plant tissues. Journal of Virological Methods, 145, 96–105.CrossRefGoogle Scholar
  54. Saleh, B., Allario, T., Dambier, D., Ollitrault, P., & Morillon, R. (2008). Tetraploid citrus rootstocks are more tolerant to salt stress than diploid. Comptes Rendus Biologies, 331, 703–710.CrossRefGoogle Scholar
  55. Sambade, A., Rubio, L., Garnsey, S. M., Costa, N., Müller, G. W., Peyrou, M., et al. (2002). Comparison of viral RNA populations of pathogenically distinct isolates of Citrus tristeza virus: Application to monitoring cross-protection. Plant Pathology, 51, 257–265.CrossRefGoogle Scholar
  56. Shafieizargar, A., Awang, Y., Juraimi, A. S., & Othman, R. (2013). Comparative studies between diploid and tetraploid Dez orange (Citrus sinensis (L.) Osb:) under salinity stress. Australian Journal of Crop Science, 7, 1436–1441.Google Scholar
  57. Tamura, K., Dudley, J., Nei, M., & Kumar, S. (2007). MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution, 24, 1596–1599.CrossRefGoogle Scholar
  58. Verniere, C., Perrier, X., Dubois, C., Dubois, A., Botella, L., Chabrier, C., et al. (2011). Citrus viroids: Symptom expression and effect on vegetative growth and yield of clementine trees grafted on trifoliate orange. Plant Disease, 88, 1189–1197.CrossRefGoogle Scholar
  59. Vives, M. C., Rubio, L., Lopez, C., Navas-Castillo, J., Albiach-Marti, M. R., Dawson, W. O., et al. (1999). The complete genome sequence of the major component of a mild citrus tristeza virus isolate. The Journal of General Virology, 80, 811–816.CrossRefGoogle Scholar
  60. Vives, M. C., Rubio, L., Sambade, A., Mirkov, T. E., Moreno, P., & Guerri, J. (2005). Evidence of multiple recombination events between two RNA sequence variants within a Citrus tristeza virus isolate. Virology, 331, 232–237.CrossRefGoogle Scholar
  61. Walter, B., & Etienne, L. (1987). Detection of the grapevine fanleaf viruses away from the period of vegetation. Journal of Phytopathology, 120, 355–364.CrossRefGoogle Scholar
  62. Wang, J., Jiang, J., & Wang, Y. (2013). Protoplast fusion for crop improvement and breeding in China. Plant Cell, Tissue and Organ Culture, 112, 131–142.CrossRefGoogle Scholar
  63. Wendel, J. F. (2000). Genome evolution in polyploids. Plant Molecular Biology, 42, 225–249.CrossRefGoogle Scholar
  64. Yang, C., Zhao, L., Zhang, H., Yang, Z., Wang, H., Wen, S., Zhang, C., Rustgi, S., von Wettstein, D., & Liu, B. (2014). Evolution and physiological responses to salt stress in hexaploid wheat. Proceedings of the National Academy of Sciences, 111, 11882–11881.CrossRefGoogle Scholar
  65. Yang, C., Powell, C. A., Duan, Y., Shatters, R. G., Lin, Y., & Zhang, M. (2016). Mitigating citrus huanglongbing via effective application of antimicrobial compounds and thermotherapy. Crop Protection, 84, 150–158.CrossRefGoogle Scholar
  66. Zanutto, C. A., Corazza, M. J., Nunes, W. M. C., & Muller, G. W. (2013). Evaluation of the protective capacity of new mild Citrus tristeza virus (CTV) isolates selected for a preimmunization program. Science in Agriculture, 70, 116–124.Google Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2018

Authors and Affiliations

  • Loredana Abbate
    • 1
  • Stefano Panno
    • 2
    • 3
  • Francesco Mercati
    • 1
    Email author
  • Salvatore Davino
    • 2
    • 4
  • Sergio Fatta Del Bosco
    • 1
  1. 1.Division of Palermo, National Research Council of ItalyInstitute of Biosciences and BioResourcesPalermoItaly
  2. 2.Department of Agricultural and Forestry ScienceUniversity of PalermoPalermoItaly
  3. 3.Euro-Mediterranean Institute of Science and Technology (IEMEST)PalermoItaly
  4. 4.National Research Council (CNR)Institute for Sustainable Plant ProtectionsTurinItaly

Personalised recommendations