Advertisement

European Journal of Plant Pathology

, Volume 153, Issue 3, pp 825–836 | Cite as

Isolation and identification of a Bacillus subtilis HZ-72 exhibiting biocontrol activity against flax seedling blight

  • Taimeng Tan
  • Jiuxiang Zhu
  • Airong Shen
  • Jilie Li
  • Yongting Yu
  • Mengjun Zhang
  • Mengrui Zhao
  • Zhimin Li
  • Jia Chen
  • Chunsheng Gao
  • Yi Cheng
  • Litao Guo
  • Li Yan
  • Xiangping Sun
  • Liangbin ZengEmail author
  • Zhun YanEmail author
Article
  • 121 Downloads

Abstract

Seedling blight caused by Rhizoctonia solani is a serious soil-borne disease on flax. In this study, we isolated a bacterial strain HZ-72 from the rhizosphere soil of flax with obvious inhibitory effect on R. solani and other six plant fungal pathogens. Strain HZ-72 was identified as Bacillus subtilis based on morphological, physiological, biochemical characteristics and 16S rDNA sequence analysis. In greenhouse experiments, the control efficiency of strain HZ-72 reached 83.34%. Additionally, in vitro assays indicated that cell wall-degrading enzymes such as protease and cellulase, volatile compounds, proteins and lipopeptides produced by strain HZ-72 all contributed to its antagonistic activity against R. solani. To our knowledge, this is the first report on the use of a rhizosphere B. subtilis strain as a biocontrol agent for the biocontrol of flax seedling blight caused by R. solani.

Keywords

Rhizosphere bacteria Bacillus subtilis Flax Rhizoctonia solani Biocontrol 

Notes

Acknowledgements

This work was supported by the Agricultural Science and Technology Innovation Program of the Chinese Academy of Agricultural Sciences (CAAS-ASTIP-2015- IBFC), the Major Scientific and Technological Projects of Hunan Province (2016NK1001), the National Key Research and Development Program of China (2017YFD0200900) and the project for Monitoring and Prevention of Crop Pests, Disease, and Mice from the Ministry of Agriculture (S158).

Compliance with ethical standards

Conflict of interest

The work complies to the ethical standards of this journal. The authors declare that they have no conflict of interest. This research did not involve human and/or animal participants. The manuscript was only submitted to EJPP and not previously published. All authors contributed and agreed to submission to EJPP.

References

  1. Ashour, A. Z. A., & Aida, H. (2000). Biocontrol of flax seedling blight with mixtures of Pseudomonas spp. Pakistan Journal of Biological Sciences, 3(3), 368–371.CrossRefGoogle Scholar
  2. Bach, E., Seger, G. D. S., Fernandes, G. C., Lisboa, B. B., & Passaglia, L. M. P. (2016). Evaluation of biological control and rhizosphere competence of plant growth promoting bacteria. Applied Soil Ecology, 99, 141–149.CrossRefGoogle Scholar
  3. Buchanan, R. E., & Gibbons, N. E. (1984). Bergey’s manual of determinative bacteriology (8th Chinese ed.). Beijing: Science Press.Google Scholar
  4. Calvo, H., Marco, P., Blanco, D., Oria, R., & Venturini, M. E. (2017). Potential of a new strain of Bacillus amyloliquefaciens BUZ-14 as a biocontrol agent of postharvest fruit diseases. Food Microbiology, 63, 101–110.CrossRefGoogle Scholar
  5. Chauhan, A. K., Maheshwari, D. K., Kim, K., & Bajpai, V. K. (2016). Termitarium-inhabiting Bacillus endophyticus TSH42 and Bacillus cereus TSH77 colonizing Curcuma longa L.: Isolation, characterization, and evaluation of their biocontrol and plant-growth-promoting activities. Canadian Journal of Microbiology, 62(10), 880–892.CrossRefGoogle Scholar
  6. Chen, S. F., Zhang, M. S., Wang, J. Y., Lv, D., Ma, Y. F., Zhou, B., & Wang, B. (2017). Biocontrol effects of Brevibacillus laterosporus AMCC100017 on potato common scab and its impact on rhizosphere bacterial communities. Biological Control, 106, 89–98.CrossRefGoogle Scholar
  7. Dong, X. Z., & Cai, M. Y. (2001). Common bacterial system identification manual. Beijing: Science Press.Google Scholar
  8. Fan, Z. Y., Miao, C. P., Qiao, X. G., Zheng, Y. K., Chen, H. H., Chen, Y. W., Xu, L. H., Zhao, L. X., & Guan, H. L. (2016). Diversity, distribution, and antagonistic activities of rhizobacteria of Panax notoginseng. Journal of Ginseng Research, 40(2), 97–104.CrossRefGoogle Scholar
  9. Fan, H. Y., Ru, J. J., Zhang, Y. Y., Wang, Q., & Li, Y. (2017). Fengycin produced by Bacillus subtilis 9407 plays a major role in the biocontrol of apple ring rot disease. Microbiological Research, 199, 89–97.CrossRefGoogle Scholar
  10. Fernando, W. D., Ramarathnam, R., Krishnamoorthy, A. S., & Savchuk, S. C. (2005). Identification and use of potential bacterial organic antifungal volatiles in biocontrol. Soil Biology and Biochemistry, 37(5), 955–964.CrossRefGoogle Scholar
  11. Ferraz, L. P., da Cunha, T., da Silva, A. C., & Kupper, K. C. (2016). Biocontrol ability and putative mode of action of yeasts against Geotrichum citri-aurantii in citrus fruit. Microbiological Research, 188, 72–79.CrossRefGoogle Scholar
  12. Fu, D., Xiang, H., Yu, C., Zheng, X., & Yu, T. (2016). Colloidal chitin reduces disease incidence of wounded pear fruit inoculated by Penicillium expansum. Postharvest Biology and Technology, 111, 1–5.CrossRefGoogle Scholar
  13. Gudmewad, R. B., Khandagale, S. G., & Kumara, S. R. V. (2016). Correlation and path coefficient analysis of economically important traits in linseed (Linum usitatissimum L.) germplasm. Electronic Journal of Plant Breeding, 7(2), 427–433.CrossRefGoogle Scholar
  14. Guo, X., Chen, D. D., Peng, K. S., Cui, Z. W., Zhang, X. J., Li, S., & Zhang, Y. A. (2016). Identification and characterization of Bacillus subtilis from grass carp (Ctenopharynodon idellus) for use as probiotic additives in aquatic feed. Fish & Shellfish Immunology, 52, 74–84.CrossRefGoogle Scholar
  15. He, J. Q., Wang, J. L., Tang, Y. B., & Wang, R. X. (2005). A technical study on flax seeds treatment with fungicides against Rhizoclonia solanikiikn. China’s Fiber and Products, 27(3), 146–148.Google Scholar
  16. Heller, K., Sheng, Q. C., Guan, F., Alexopoulou, E., Hua, L. S., Wu, G. W., Jankauskienė, Z., & Fu, W. Y. (2015). A comparative study between Europe and China in crop management of two types of flax: Linseed and fibre flax. Industrial Crops and Products, 68, 24–31.CrossRefGoogle Scholar
  17. Jadhav, H. P., Shaikh, S. S., & Sayyed, R. Z. (2017). Role of hydrolytic enzymes of rhizoflora in biocontrol of fungal phytopathogens: An overview. In Rhizotrophs: plant growth promotion to bioremediation (pp. 183–203). Singapore: Springer.Google Scholar
  18. Khedher, S. B., Kilani-Feki, O., Dammak, M., Jabnoun-Khiareddine, H., Daami-Remadi, M., & Tounsi, S. (2015). Efficacy of Bacillus subtilis V26 as a biological control agent against Rhizoctonia solani on potato. Comptes Rendus Biologies, 338(12), 784–792.CrossRefGoogle Scholar
  19. Kumar, K. V. K., Yellareddygari, S. K., Reddy, M. S., Kloepper, J. W., Lawrence, K. S., Zhou, X. G., Sudini, H., Groth, D. E., Raju, S. K., & Miller, M. E. (2012). Efficacy of Bacillus subtilis MBI 600 against sheath blight caused by Rhizoctonia solani and on growth and yield of rice. Rice Science, 19(1), 55–63.CrossRefGoogle Scholar
  20. Lane, D. J. (1991). 16S/23S rRNA sequencing. In E. Stackebrandt & M. Goodfellow (Eds.), Nucleic acid techniques in bacterial systematices (pp. 115–175). Chichester: Wiley.Google Scholar
  21. Liu, B., Huang, L. L., Buchenauer, H., & Kang, Z. S. (2010). Isolation and partial characterization of an antifungal protein from the endophytic Bacillus subtilis strain EDR4. Pesticide Biochemistry and Physiology, 98(2), 305–311.CrossRefGoogle Scholar
  22. Ma, X., Wang, X. B., Cheng, J., Nie, X., Yu, X. X., Zhao, Y. T., & Wang, W. (2015). Microencapsulation of Bacillus subtilis B99-2 and its biocontrol efficiency against Rhizoctonia solani in tomato. Biological Control, 90, 34–41.CrossRefGoogle Scholar
  23. Mu, J. J., Li, X. P., Jiao, J. G., Ji, G. N., Wu, J., Hu, F., & Li, H. X. (2017). Biocontrol potential of vermicompost through antifungal volatiles produced by indigenous bacteria. Biological Control, 112, 49–54.CrossRefGoogle Scholar
  24. Prasanna Kumar, M. K., Amruta, N., Manjula, C. P., Puneeth, M. E., & Teli, K. (2017). Characterisation, screening and selection of Bacillus subtilis isolates for its biocontrol efficiency against major rice diseases. Biocontrol Science and Technology, 27(4), 581–599.CrossRefGoogle Scholar
  25. Shi, J. F., & Sun, C. Q. (2017). Isolation, identification, and biocontrol of antagonistic bacterium against Botrytis cinerea after tomato harvest. Brazilian Journal of Microbiology, 48, 706–714.  https://doi.org/10.1016/j.bjm.2017.03.002.CrossRefGoogle Scholar
  26. Sun, G. Z., Yao, T., Feng, C. J., Chen, L., Li, J. H., & Wang, L. D. (2017). Identification and biocontrol potential of antagonistic bacteria strains against Sclerotinia sclerotiorum and their growth-promoting effects on Brassica napus. Biological Control, 104, 35–43.CrossRefGoogle Scholar
  27. Velusamy, P., Immanuel, J. E., & Gnanamanickam, S. S. (2013). Rhizosphere bacteria for biocontrol of bacterial blight and growth promotion of rice. Rice Science, 20(5), 356–362.CrossRefGoogle Scholar
  28. Vida, C., Cazorla, F. M., & de Vicente, A. (2017). Characterization of biocontrol bacterial strains isolated from a suppressiveness-induced soil after amendment with composted almond shells. Research in Microbiology, 168(6), 583–593.CrossRefGoogle Scholar
  29. Xue, L., Xue, Q. H., Chen, Q., Lin, C. F., Shen, G. H., & Zhao, J. (2013). Isolation and evaluation of rhizosphere actinomycetes with potential application for biocontrol of Verticillium wilt of cotton. Crop Protection, 43, 231–240.CrossRefGoogle Scholar
  30. Yánez-Mendizábal, V., Usall, J., Viñas, I., Casals, C., Marín, S., Solsona, C., & Teixidó, N. (2011). Potential of a new strain of Bacillus subtilis CPA-8 to control the major postharvest diseases of fruit. Biocontrol Science and Technology, 21(4), 409–426.CrossRefGoogle Scholar
  31. Yang, X., Liu, L. Y., Guang, F. Z., Li, Z. G., Wu, G. W., Wang, X., Lu, Y., & Chen, H. (2009). Identification of flax Rhizoctonia solani pathogen and medicament selection. Heilongjiang Agricultural Sciences in China, 2009(4), 67–68.Google Scholar
  32. Youssef, S. A., Tartoura, K. A., & Abdelraouf, G. A. (2016). Evaluation of Trichoderma harzianum and Serratia proteamaculans effect on disease suppression, stimulation of ROS-scavenging enzymes and improving tomato growth infected by Rhizoctonia solani. Biological Control, 100, 79–86.CrossRefGoogle Scholar
  33. Yu, X. M., Ai, C. X., Xin, L., & Zhou, G. F. (2011). The siderophore-producing bacterium, Bacillus subtilis CAS15, has a biocontrol effect on fusarium wilt and promotes the growth of pepper. European Journal of Soil Biology, 47(2), 138–145.CrossRefGoogle Scholar
  34. Yu, Y. Y., Jiang, C. H., Wang, C., Chen, L. J., Li, H. Y., Xu, Q., & Guo, J. H. (2017). An improved strategy for stable biocontrol agents selecting to control rice sheath blight caused by Rhizoctonia solani. Microbiological Research, 203, 1–9.CrossRefGoogle Scholar
  35. Zhang, M. J., Li, J. L., Shen, A. R., Tan, S. Y., Yan, Z., Yu, Y. T., Xue, Z. D., Tan, T. M., & Zeng, L. B. (2016). Isolation and identification of Bacillus amyloliquefaciens IBFCBF-1 with potential for biological control of Phytophthora blight and growth promotion of pepper. Journal of Phytopathology, 164(11–12), 1012–1021.CrossRefGoogle Scholar
  36. Zhang, X., Zhou, Y. Y., Li, Y., Fu, X. C., & Wang, Q. (2017). Screening and characterization of endophytic Bacillus for biocontrol of grapevine downy mildew. Crop Protection, 96, 173–179.CrossRefGoogle Scholar
  37. Zhang, B., Wang, J. N., Ning, S. Q., Yuan, Q., Chen, X. N., Zhang, Y. Y., & Fan, J. F. (2018). Peptides derived from tryptic hydrolysate of Bacillus subtilis culture suppress fungal spoilage of table grapes. Food Chemistry, 239, 520–528.  https://doi.org/10.1016/j.foodchem.2017.06.153.CrossRefGoogle Scholar
  38. Zhao, S., Li, J. Y., Liu, F., Yang, W. X., Zhang, N., & Liu, D. Q. (2015). Antagonism of Paenibacillus polymyxa Z-X-225 against pathogen of pricklyash peel ear blight disease. Journal of Plant Protection in China, 42(5), 863–864.Google Scholar
  39. Zheng, Y., Xue, Q. Y., Xu, L. L., Xu, Q., Lu, S., Gu, C., & Guo, J. H. (2011). A screening strategy of fungal biocontrol agents towards Verticillium wilt of cotton. Biological Control, 56(3), 209–216.CrossRefGoogle Scholar
  40. Zhu, X., Yang, G. A., Wang, X. M., Chen, X. Y., Sun, C. H., Yang, J. Q., Dong, L. M., Chen, G. H., Sheng, J. B., Tian, C. L., & Yang, W. G. (2010). Control efficacy of several agrochemicals to flax Rhizoctonia solani in field. Plant Fiber Sciences in China, 32(6), 323–326.Google Scholar
  41. Zouari, I., Jlaiel, L., Tounsi, S., & Trigui, M. (2016). Biocontrol activity of the endophytic Bacillus amyloliquefaciens strain CEIZ-11 against Pythium aphanidermatum and purification of its bioactive compounds. Biological Control, 100, 54–62.CrossRefGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2018

Authors and Affiliations

  • Taimeng Tan
    • 1
    • 2
  • Jiuxiang Zhu
    • 1
    • 2
  • Airong Shen
    • 3
  • Jilie Li
    • 2
  • Yongting Yu
    • 1
  • Mengjun Zhang
    • 2
  • Mengrui Zhao
    • 2
  • Zhimin Li
    • 1
  • Jia Chen
    • 1
  • Chunsheng Gao
    • 1
  • Yi Cheng
    • 1
  • Litao Guo
    • 1
  • Li Yan
    • 1
  • Xiangping Sun
    • 1
  • Liangbin Zeng
    • 1
    Email author
  • Zhun Yan
    • 1
    Email author
  1. 1.Institute of Bast Fiber CropsChinese Academy of Agricultural SciencesChangshaChina
  2. 2.Key Laboratory of Cultivation and Protection for Non-Wood Forest TreesCentral South University of Forestry and TechnologyChangshaChina
  3. 3.Hunan Academy of ForestryChangshaChina

Personalised recommendations