Advertisement

European Journal of Plant Pathology

, Volume 153, Issue 2, pp 475–487 | Cite as

Seedling and adult stage resistance to spot form of net blotch (SFNB) in spring barley and stability of adult stage resistance to SFNB in Morocco

  • Sanjaya GyawaliEmail author
  • Reda Amezrou
  • Ramesh Pal Singh Verma
  • Robert Brueggeman
  • Sajid Rehman
  • Loubna Belqadi
  • Mustapha Arbaoui
  • Prabin Tamang
  • Murari Singh
Article
  • 78 Downloads

Abstract

The aims of this study were to identify resistance to spot form of net blotch (SFNB) in spring barley and to investigate the stability of SFNB resistance in Morocco. The seedling resistance to SFNB was evaluated by inoculating 340 barley genotypes with the Pyrenophora teres F. maculata (Ptm) isolate FGOB10Ptm-1 (FGO) in the greenhouse. The same barely genotypes were evaluated for adult-stage plant resistance to SFNB in field trials in Morocco. All experiments were conducted in alpha-lattices with two replicates. SFNB disease severity was estimated on barley leaves using double digit scale. To investigate the stability of both qualitative and quantitative resistance to SFNB, 104 barley genotypes were subjected to AMMI analysis. Differential responses of SFNB barley resistance to FGO were found at the seedling stage in the greenhouse. Twelve genotypes showing scores of <1.5, at the seedling stage, were determined to be highly resistant to FGO. The ANOVA showed highly significant (p < 0.001) effects of genotype (G) and G × E (E-Pathotypes of SFNB) interaction on SFNB severity among the 340 barley genotypes at the adult plant stage. The AMMI ANOVA showed that IPCA1, IPCA2 and IPCA3 accounted for 77.9% of the variation of the G × E interaction for SFNB severity. The G × E interaction consisted of divergent genotypic responses to SFNB severity due to different pathotypes prevalent in hot-spot environments. The AMMI stability value demonstrated that barley genotypes AM-14, 30, 31, 68, 107, 108, 112, 149, 170, 185, 204, 240, 304, 326, 326 and 337 were resistant and stable across hot-spot environments against SFNB. Divergent environmental responses of SFNB were recorded in MCH_2015, SE_2015, AT_2016, SE_2016 and JS_2015. Stable SFNB resistant genotypes are valuable resources for the introgression of qualitative and quantitative resistance to barley in Morocco.

Keywords

AMMI Barley Net blotch Ptm Resistance SFNB 

Notes

Acknowledgements

The authors are thankful to the research technicians of ICARDA and INRA-Maroc in all of the test locations. The funding for this research was provided jointly by ICARDA and CRP-Dryland Cereals. Authors are thankful to Mr. Alex Marcus Batson from Washington State University, NWREC, Mt. Vernon for his critical review and English editing.

Compliance with ethical standards

All authors of this manuscript are aware of the content of the article and have agreed upon it submission to European Journal of Plant Pathology.

The manuscript has not been published in whole or part elsewhere.

The manuscript is not currently being considered for publication in another journal.

The manuscript is not split up into several parts to increase the quantity of submission.

Conflict of interest

The authors declare no conflict of interests

Supplementary material

10658_2018_1575_MOESM1_ESM.xlsx (47 kb)
ESM 1 (XLSX 47 kb)
10658_2018_1575_MOESM2_ESM.docx (152 kb)
ESM 2 (DOCX 151 kb)

References

  1. Abamu, F. J., Akinsola, E. A., & Alluri, K. (1998). Applying the AMMI models to understand genotype-by-environment (G×E) interactions in rice reaction to blast disease in Africa. International Journal of Pest Management, 44(4), 239–245.  https://doi.org/10.1080/096708798228167.CrossRefGoogle Scholar
  2. Aina, O. O., Dixon, A. G. O., & Akinrinde, E. A. (2007). Additive main effects and multiplicative interaction (AMMI) analysis for yield of cassava in Nigeria. Journal of Biological Sciences, 7, 796–800.CrossRefGoogle Scholar
  3. Amezrou, R., Gyawali, S., Belqadi, L., Chao, S., Arbaoui, M., Mamidi, S., Rehman, S., Sreedasyam, A., & Verma, R. P. S. (2017) Molecular and phenotypic diversity of ICARDA spring barley (Hordeum vulgare L.) collection. Genetic Resour Crop Evol 65:255–269.  https://doi.org/10.1007/s10722-017-0527-z
  4. Amezrou, R. (2018) Genome-wide association studies of multiple traits in barley (Hordeum vulgare L.). PhD dissertation. Institut Agronomique et Vétérinaire Hassan II. Rabat, MoroccoGoogle Scholar
  5. Bentata, F., Labhilili, M., EI Aissami, A., Bary, S., Yeslem, C. H., & Ibijbijen, J. (2011). Analysis of diversity genetic of Moroccan net blotch populations using amplified fragment length polymorphism (AFLP) markers. African Journal of Biotechnology, 10(39), 7548–7554.  https://doi.org/10.5897/AJB10.1340.Google Scholar
  6. Cherif, M., Rezgui, S., Devaux, P., & Harrabi, M. (2010). Genotype × environment interactions and heritability of quantitative resistance to net blotch in Tunisian barley. Journal of Plant Breeding and Crop Science, 2(5), 110–116.Google Scholar
  7. Cromey, M. G., & Parkes, R. A. (2003). Pathogenic variation in Drechslera teres in New Zealand. New Zealand Plant Protection, 56, 251–256.Google Scholar
  8. Crossa, J., Cornelius, P. L., & Yan, W. (2002). Biplots of linear bilinear models for studying crossover genotypes x environment interaction. Crop Science, 42, 619–633.  https://doi.org/10.1111/j.1439-0434.2009.01631.x.CrossRefGoogle Scholar
  9. DeLacy, I. H., Basford, K. E., Cooper, M., & Fox, P. N. (1996a). Retrospective analysis of historical data sets from multi-environment trials- theoretical development. In M. Cooper & G. L. Hammer (Eds.), Plant adaptation and crop improvement (pp. 243–267). Wallingford, UK: CAB International.Google Scholar
  10. DeLacy, I. H., Ratnasiri, W. G. A., & Mirzawan, P. D. N. (1996b). Retrospective analysis of historical data sets from multi-environment trials-case studies. In M. Cooper & G. L. Hammer (Eds.), Plant adaptation and crop improvement (pp. 269–290). Wallingford, UK: CAB International.Google Scholar
  11. Douiyssi, A., Rasmusson, D. C., & Roelfs, A. P. (1998). Responses of barley cultivars and lines to isolates of Pyrenophora teres. Plant Disease, 82, 316–321.CrossRefGoogle Scholar
  12. Eberhart, S. A., & Russell, W. A. (1966). Stability parameters for comparing varieties. Crop Science, 6, 36–40.CrossRefGoogle Scholar
  13. Eyal Z, Scharen AL, Prescott JM, Van Ginkel M (1987) The Septoria diseases of wheat: Concepts 483 and methods of disease management. CIMMYT, Mexico D.F.Google Scholar
  14. Farshadfar, E., Mahmodi, N., & Yaghotipoor, A. (2011). AMMI stability value and simultaneous estimation of yield and yield stability in bread wheat (Triticum aestivum L.). Australian Journal of Crop Science, 5(13), 1837–1844.Google Scholar
  15. Finlay, K. W., & Wilkinson, G. N. (1963). The analysis of adaptation in a plant breeding programme. Australian Journal of Agricultural Research, 14, 742–754.CrossRefGoogle Scholar
  16. Forbes, G. A., Chacón, M. G., Kirk, H. G., Huarte, M. A., Van Damme, M., Distel, S., Mackay, G. R., Stewart, H. E., Lowe, R., Duncan, J. M., Mayton, H. S., Fry, W. E., Andrivon, D., Ellissèche, D., Pellé, R., Platt, H. W., Mackenzie, G., Tarn, T. R., Colon, L. T., Budding, D. J., Lozoya-Saldaña, H., Hernandez-Vilchis, A., & Capezio, S. (2005). Stability of resistance to Phytophthora infestans in potato: An international evaluation. Plant Pathology, 54(3), 364–372.  https://doi.org/10.1111/j.1365-3059.2005.01187.x.CrossRefGoogle Scholar
  17. Gauch, H. G., Piepho, H. P., & Annicchiarico, P. (2008). Statistical analysis of yield trials by AMMI and GGE: Further considerations. Crop Science, 48, 866–889.  https://doi.org/10.2135/cropsci2007.09.0513.CrossRefGoogle Scholar
  18. Gupta, S., & Loughman, R. (2001). Current virulence of Pyrenophora teres on barley in Western Australia. Plant Disease, 85, 960–966.CrossRefGoogle Scholar
  19. Harrabi, M., & Kamel, A. (1990). Virulence spectrum to barley in some isolates of Pyrenophora teres from the Mediterranean region. Plant Disease, 74, 230–232.CrossRefGoogle Scholar
  20. Jebbouj, R., & El Yousfi, B. (2010). An integrated multivariate approach to net blotch of barley: Virulence quantification, pathotyping and a breeding strategy for disease resistance. European Journal Plant Pathology, 127, 521–544.CrossRefGoogle Scholar
  21. Jonsson, R., Bryngelssonm, T., & Gustafsson, M. (1997). Virulence studies of Swedish net blotch isolates (Drechslera teres) and identification of resistant barley lines. Euphytica, 94, 209–218.CrossRefGoogle Scholar
  22. Kinzer KMD (2015) Characterizing P. teres F. maculata in the northern United States and impact of spot form net blotch on yield of barley. PhD Dissertation. North Dakota State University, ND, USA.Google Scholar
  23. Liu, Z. H., Zhong, S., Stasko, A. K., Edwards, M. C., & Friesen, T. L. (2012). Virulence profile and genetic structure of a North Dakota population of Pyrenophora teres f. teres, the causal agent of net form net blotch of barley. Phytopathology, 102, 539–546.CrossRefGoogle Scholar
  24. Mathre, D. E. (1982). Compendium of barley diseases. Am. Phytopathol. Soc. St. In Paul. USA: Minnesota.Google Scholar
  25. Miranda, G. V., Souza, L. V., Guimarães, L. J. M., Namorato, H. L., Oliveira, R., & Soares, M. O. (2009). Multivariate analyses of genotype x environment interaction of popcorn. Pesquisa Agropecuária Brasileira, 44(1), 45–50.CrossRefGoogle Scholar
  26. Neupane, A., Tamang, P., Brueggeman, R. S., & Friesen, T. L. (2015). Evaluation of barley core collection for spot form of net blotch reaction reveals distinct genotype-specific pathogen virulence and host susceptibility. Phytopathology, 105, 509–517.  https://doi.org/10.1094/PHYTO-04-14-0107-R.CrossRefGoogle Scholar
  27. Perkins, J. M., & Jinks, J. L. (1968). Environmental and genotype environmental components of variability. III. Multiple lines and crosses. Heredity, 23, 339–356.CrossRefGoogle Scholar
  28. Qamar, A., Liu, Z.H.M., Faris, J.D., Chao, S., Edwards, M.C., Lai, Z., Franckowiak, J.D., Friesen, & T.L. (2008). A region of barley chromosome 6H harbors multiple major genes associated with net type net blotch resistance. Theoretical and Applied Genetics, 117, 1261–1270.Google Scholar
  29. Rao, P. S., Reddy, P. S., Rathore, A., Reddy, B. V., & Panwar, S. (2011). Application GGE biplot and AMMI model to evaluate sweet sorghum (Sorghum bicolor) hybrids for genotype x environment interaction and seasonal adaptation. Indian Journal of Agricultural Science, 81, 438–444.Google Scholar
  30. Robinson, J., & Jalli, M. (1999). Sensitivity of resistance to net blotch in barley. Journal of Phytopathology, 147(4), 235–241.  https://doi.org/10.1046/j.1439-0434.1999.147004235.x.CrossRefGoogle Scholar
  31. Rose, L. J., Mouton, M., Beukes, I., Flett, B. C., van der Vyver, C., & Viljoen, A. (2016). Multi-environment evaluation of maize inbred lines for resistance to fusarium ear rot and fumonisins. Plant Disease, 100(10), 2134–2144.  https://doi.org/10.1094/PDIS-11-15-1360-RE.CrossRefGoogle Scholar
  32. Saari, E. E., & Prescott, J. M. (1975). A scale for appraising the foliar severity of wheat diseases. Plant Disease Reporter, 59, 377–380.Google Scholar
  33. Shah, S. J. A., Imtiaz, M., & Hussain, S. (2010). Phenotypic and molecular characterization of wheat for slow rusting resistance against Puccinia striiformis Westend. f.sp. tritici. Journal of Phytopathology, 158(6), 393–402.  https://doi.org/10.1111/j.1439-0434.2009.01631.x.CrossRefGoogle Scholar
  34. Shipton, W. A., Khan, T. N., & Boyd, W. J. R. (1973). Net blotch of barley. Review of Plant Pathology, 52, 269–290.Google Scholar
  35. Shukla, G. K. (1972). Some statistical aspects of partitioning genotype-environment components of variability. Heredity, 29, 237–245.CrossRefGoogle Scholar
  36. Taibi, K., Bentata, G., Rehman, S., Labhilili, M., El Aissami, A., Verma, R. P. S., & Gyawali, S. (2016) Virulence of Moroccan Pyrenophora teres f. teres revealed by international differential barley genotypes. 44(2):263–271Google Scholar
  37. Tamang, P., Neupane, A., Mamidi, S., Friesen, T., & Brueggeman, R. (2015). Association mapping of seedling resistance to spot form of net blotch in a worldwide collection of barley. Phytopathology, 105, 500–508.CrossRefGoogle Scholar
  38. Tekauz, A. (1990). Characterization and distribution of pathogenic variation in Pyrenophora teres f. teres and P. teres f. maculata from western Canada. Canadian Journal of Plant Pathology, 12, 141–148.CrossRefGoogle Scholar
  39. Tuohy, J. M., Jalli, M., Cooke, B. M., & O’Sullivan, E. (2006). Pathogenic variation in populations of Drechslera teres f. teres and D. teres f. maculata and differences in host cultivar responses. European Journal of Plant Pathology, 116, 177–185.  https://doi.org/10.1007/s10658-006-9001-z.CrossRefGoogle Scholar
  40. Yan, W., Hunt, L. A., Sheng, Q., & Szlavnics, Z. (2000). Cultivar evaluation and mega-environment investigation based on GGE biplot. Crop Science, 40, 596–605.CrossRefGoogle Scholar
  41. Yousfi, B. E., & Ezzahiri, B. (2001). Net blotch in semi-arid regions of Morocco. I. Epidemiology. Field Crop Research, 73, 35–46.  https://doi.org/10.1016/S0378-4290(01)00180-0.CrossRefGoogle Scholar
  42. Yousfi, B. E., & Ezzahiri, B. (2002). Net blotch in semi-arid regions of Morocco II. Yield and yield-loss modeling. Field. Crop Research, 73, 81–93.  https://doi.org/10.1016/S0378-4290(01)00189-7.CrossRefGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2018

Authors and Affiliations

  • Sanjaya Gyawali
    • 1
    • 2
    Email author
  • Reda Amezrou
    • 1
  • Ramesh Pal Singh Verma
    • 1
  • Robert Brueggeman
    • 3
  • Sajid Rehman
    • 1
  • Loubna Belqadi
    • 4
  • Mustapha Arbaoui
    • 4
  • Prabin Tamang
    • 3
  • Murari Singh
    • 1
  1. 1.International Center for Agricultural Research in the Dry Areas (ICARDA), Crop Improvement Program, BIGM ProgramRabatMorocco
  2. 2.Washington State University, NWRECMt VernonUSA
  3. 3.Department of Plant PathologyNorth Dakota State UniversityFargoUSA
  4. 4.IAV Hassan II, Department of Plant Breeding and GeneticsRabatMorocco

Personalised recommendations