Advertisement

European Journal of Plant Pathology

, Volume 153, Issue 3, pp 715–729 | Cite as

Infection incidence, kernel colonisation, and mycotoxin accumulation in durum wheat inoculated with Fusarium sporotrichioides, F. langsethiae or F. poae at different growth stages

  • L. Nazari
  • E. Pattori
  • S. Somma
  • V. Manstretta
  • C. Waalwijk
  • A. Moretti
  • G. Meca
  • V. RossiEmail author
Article
  • 84 Downloads

Abstract

A 2-year field experiment was conducted to determine the effects of Fusarium sporotrichioides, F. langsethiae, or F. poae on durum wheat plants artificially inoculated at different growth stages. The percentage of symptomatic kernels was similar among the three species, but incidence of infected kernels was lower for F. langsethiae. Kernel colonization was higher when plants were inoculated before and during anthesis for F. sporotrichioides and F. poae, but unaffected by timing of inoculation for F. langsethiae. Production of T-2/HT-2 toxins was higher for F. sporotrichioides than for F. langsethiae. Significant accumulations of nivalenol were detected for F. poae. Across all three species, there was a weak correlation (r = 0.16; P = 0.031) between the incidences of symptomatic and infected kernels, but a stronger correlation (r = 0.53; P < 0.001) between infection incidence and the quantity of fungal DNA (species-specific) in kernels. Mycotoxin content was correlated (r > 0.58; P < 0.007) with infection incidence or fungal DNA in kernels, but only for F. sporotrichioides and F. poae.

Keywords

T-2 HT-2 Nivalenol Small-grain cereals Fusarium head blight 

Notes

Acknowledgements

The first author carried out this work within the Doctoral School on the Agro-Food System (Agrisystem) of the Università Cattolica del Sacro Cuore (Italy). Parts of this work were supported by the Italian Ministry of Agricultural, Food and Forestry Policies, MiPAAF (project “MICOPRINCEM”).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants and/or animal

The research did not involve human participant or animals.

Informed consent

N/A.

References

  1. Arseniuk, E., Goral, T., & Czembor, H. J. (1993). Reaction of triticale, wheat and rye accessions to graminaceous Fusarium spp. infection at the seedling and adult plant growth stages. Euphytica, 70, 175–183.Google Scholar
  2. Beremand, M. N., Desjardin, A. E., Hohn, T. M., & VanMiddlesworth, F. L. (1991). Survey of Fusarium sambucinum (Gibberella pulicaris) form mating type, trichothecene production, and other selected traits. Phytopathology, 81, 1452–1458.Google Scholar
  3. Birzele, B., Meier, A., Hindorf, H., Krämer, J., Dehne, H.-W. W., Kramer, J., & Dehne, H.-W. W. (2002). Epidemiology of Fusarium infection and deoxynivalenol content in winter wheat in the Rhineland, Germany. European Journal of Plant Pathology, 108(7), 667–673.  https://doi.org/10.1023/A:1020632816441.Google Scholar
  4. Blaney, B. J. J., & Dodman, R. L. L. (2002). Production of zearalenone, deoxynivalenol, nivalenol, and acetylated derivatives by Australian isolates of Fusarium graminearum and F. pseudograminearum in relation to source and culturing conditions. Australian Journal of Agricultural Research, 53(12), 1317–1326.  https://doi.org/10.1071/AR02041.Google Scholar
  5. Boutigny, A. L., Richard-Forget, F., & Barreau, C. (2008). Natural mechanisms for cereal resistance to the accumulation of fusarium trichothecenes. European Journal of Plant Pathology, 121(4), 411–423.  https://doi.org/10.1007/s10658-007-9266-x.Google Scholar
  6. Boyacioglu, D., Hettiarachchy, N. S., & Stacks, R. W. (1992). Effect of three systemic fungicides on deoxynivalenol (vomitoxin) production by Fusarium graminearum in wheat. Canadian Journal of Plant Science, 72, 93–101.Google Scholar
  7. Browne, R. a. (2007). Components of resistance to fusarium head blight (FHB) in wheat detected in a seed-germination assay with Microdochium majus and the relationship to FHB disease development and mycotoxin accumulation from Fusarium graminearum infection. Plant Pathology, 56(1), 65–72.  https://doi.org/10.1111/j.1365-3059.2006.01509.x.Google Scholar
  8. Desjardins, A. E. (2006). Fusarium mycotoxins: Chemistry, genetics, and biology (p. 260). St. Paul:American Phytopathological Society (APS Press). Google Scholar
  9. Desjardins, A. E., Jarosz, A. M., Plattner, R. D., Alexander, N. J., Brown, D. W., & Jurgenson, J. E. (2004). Patterns of trichothecene production, genetic variability, and virulence to wheat of Fusarium graminearum from smallholder farms in Nepal. Journal of Agricultural and Food Chemistry, 52(20), 6341–6346.  https://doi.org/10.1021/jf040181e.Google Scholar
  10. Dinolfo, M. I., & Stenglein, S. A. (2014). Fusarium poae and mycotoxins: Potential risk for consumers. Boletin de la Sociedad Argentina de Botanica, 49(1), 5–20.Google Scholar
  11. Divon, H. H., Razzaghian, J., Udnes-Aamot, H., & Klemsdal, S. S. (2012). Fusarium langsethiae (Torp and Nirenberg), investigation of alternative infection routes in oats. European Journal of Plant Pathology, 132(1), 147–161.  https://doi.org/10.1007/s10658-011-9858-3.Google Scholar
  12. Doohan, F. M., Parry, D. W., Jenkinson, P., & Nicholson, P. (1998). The use of species-specific PCR-based assays to analyse fusarium ear blight of wheat. Plant Pathology, 47(2), 197–205.  https://doi.org/10.1046/j.1365-3059.1998.00218.x.Google Scholar
  13. Doohan, F. M., Parry, D. W., & Nicholson, P. (1999). Fusarium ear blight of wheat: The use of quantitative PCR and visual disease assessment in studies of disease control. Plant Pathology, 48(2), 209–217.  https://doi.org/10.1046/j.1365-3059.1999.00342.x.Google Scholar
  14. Edwards, S. G. G., Prigozliev, S. R., Hare, M. C. C., Jenkinson, P., Pirgozliev, S. R. R., Hare, M. C. C., & Jenkinson, P. (2001). Quantification of trichothecene-producing Fusarium species in harvested grain by competitive PCR to determine efficacies of fungicides against fusarium head blight of winter wheat. Applied and Environmental Microbiology, 67(4), 1575–1580.  https://doi.org/10.1128/AEM.67.4.1575.Google Scholar
  15. Edwards, S. G., Imathiu, S. M., Ray, R. V., Back, M., & Hare, M. C. (2012). Molecular studies to identify the Fusarium species responsible for HT-2 and T-2 mycotoxins in UK oats. International Journal of Food Microbiology, 156(2), 168–175.  https://doi.org/10.1016/j.ijfoodmicro.2012.03.020.Google Scholar
  16. European Commission. (2006). Commission regulation (EC) no 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs.Google Scholar
  17. European Commission. (2013). Recomendations on the presence of T-2 and HT-2 toxin in cereals and cereal products. Official Journal of the European Union, 9(91), 12–15.  https://doi.org/10.2903/j.efsa.2011.2481.Available.Google Scholar
  18. Fredlund, E., Gidlund, A., Olsen, M., Börjesson, T., Spliid, N. H. H., & Simonsson, M. (2008). Method evaluation of fusarium DNA extraction from mycelia and wheat for down-stream real-time PCR quantification and correlation to mycotoxin levels. Journal of Microbiological Methods, 73(1), 33–40.  https://doi.org/10.1016/j.mimet.2008.01.007.Google Scholar
  19. Fredlund, E., Gidlund, A., Pettersson, H., Olsen, M., & Börjesson, T. (2010). Real-time PCR detection of Fusarium species in Swedish oats and correlation to T-2 and HT-2 toxin content. World Mycotoxin Journal, 3(1), 77–88.  https://doi.org/10.3920/WMJ2009.1179.Google Scholar
  20. Gutleb, A. C., Morrison, E., & Murk, A. J. (2002). Cytotoxicity assays for mycotoxins produced by Fusarium strains: A review. Environmental Toxicology and Pharmacology, 11(3–4), 309–320.  https://doi.org/10.1016/S1382-6689(02)00020-0.Google Scholar
  21. Haidukowski, M., Visconti, A., Perrone, G., Vanadia, S., Pancaldi, D., Covarelli, L., et al. (2012). Effect of prothioconazole-based fungicides on fusarium head blight, grain yield and deoxynivalenol accumulation in wheat under field conditions. Phytopathologia Mediterranea, 51(1), 236–246.Google Scholar
  22. Halstensen, A. S., Nordby, K.-C., Eduard, W., & Klemsdal, S. S. (2006). Real-time PCR detection of toxigenic fusarium in airborne and settled grain dust and associations with trichothecene mycotoxins. Journal of Environmental Monitoring : JEM, 8(12), 1235–1241.  https://doi.org/10.1039/b609840a.Google Scholar
  23. Hill, N. S., Neate, S. M., Cooper, B., Horsley, R., Schwarz, P., Dahleen, L. S., Smith, K. P., O'Donnell, K., & Reeves, J. (2008). Comparison of ELISA for Fusarium, visual screening, and deoxynivalenol analysis of fusarium head blight for barley field nurseries. Crop Science, 48(4), 1389–1398.  https://doi.org/10.2135/cropsci2007.05.0266.Google Scholar
  24. Hooker, D. C., Schaafsma, a. W., Tamburic-Ilincic, L., College, R., & Tamburic-Ilincic, L. (2002). Using weather variables pre- and post-heading to predict deoxynivalenol content in winter wheat. Plant Disease, 86(6), 611–619.  https://doi.org/10.1094/PDIS.2002.86.6.611.Google Scholar
  25. Imathiu, S. M., Ray, R. V., Back, M., Hare, M. C., & Edwards, S. G. (2009). Fusarium langsethiae pathogenicity and aggressiveness towards oats and wheat in wounded and unwounded in vitro detached leaf assays. European Journal of Plant Pathology, 124(1), 117–126.  https://doi.org/10.1007/s10658-008-9398-7.Google Scholar
  26. Imathiu, S. M., Edwards, S. G., Ray, R. V., & Back, M. a. (2013a). Fusarium langsethiae - a HT-2 and T-2 toxins producer that needs more attention. Journal of Phytopathology, 161(1), 1–10.  https://doi.org/10.1111/jph.12036.Google Scholar
  27. Imathiu, S. M., Ray, R. V., Back, M. I., Hare, M. C., & Edwards, S. G. (2013b). A survey investigating the infection of Fusarium langsethiae and production of HT-2 and T-2 mycotoxins in UK oat fields. Journal of Phytopathology, 161(7–8), 553–561.  https://doi.org/10.1111/jph.12105.Google Scholar
  28. Infantino, A., Pucci, N., Conca, G., & Santori, A. (2007). First report of Fusarium langsethiae on durum wheat kernels in Italy. Plant Disease, 91(10), 1362–1362.  https://doi.org/10.1094/PDIS-91-10-1362A.Google Scholar
  29. Infantino, A., Santori, A., Aureli, G., Belocchi, A., De Felice, S., Tizzani, L., et al. (2015). Occurrence of Fusarium langsethiae strains isolated from durum wheat in Italy. Journal of Phytopathology, 163(7–8), 612–619.  https://doi.org/10.1111/jph.12361.Google Scholar
  30. Infantino, A., Costa, C., Aragona, M., Reverberi, M., Taiti, C., & Mancuso, S. (2017). Identification of different Fusarium spp. through mVOCS profiling by means of proton-transfer-reaction time-of-flight (PTR-TOF-MS) analysis. Journal of Plant Pathology, 99(3), 663–669.  https://doi.org/10.4454/jpp.v99i3.3953.Google Scholar
  31. Jestoi, M. (2008). Emerging Fusarium-mycotoxins fusaproliferin, beauvericin, enniatins, and moniliformin: A review. Critical Reviews in Food Science and Nutrition, 48(1), 21–49.  https://doi.org/10.1080/10408390601062021.Google Scholar
  32. Jestoi, M. N., Paavanen-Huhtala, S., Parikka, P., & Yli-Mattila, T. (2008). In vitro and in vivo mycotoxin production of fusarium species isolated from Finnish grains. Archives of Phytopathology and Plant Protection, 41(8), 545–558.  https://doi.org/10.1080/03235400600881547.Google Scholar
  33. Jurado, M., Vázquez, C., Marín, S., Sanchis, V., & Teresa González-Jaén, M. (2006). PCR-based strategy to detect contamination with mycotoxigenic Fusarium species in maize. Systematic and Applied Microbiology, 29(8), 681–689.  https://doi.org/10.1016/j.syapm.2006.01.014.Google Scholar
  34. Kiecana, I., Cegielko, M., Mielniczuk, E., & Perlowski, J. (2012). The occurrence of Fusarium poae (peck) Wollenw. On oat (Avena sativa L.) panicles and its harmfulness. Acta Agrobotanica, 65(4), 169–178.Google Scholar
  35. Köhl, J., Lombaers, C., Moretti, A., Bandyopadhyay, R., Somma, S., & Kastelein, P. (2015). Analysis of microbial taxonomical groups present in maize stalks suppressive to colonization by toxigenic Fusarium spp.: A strategy for the identification of potential antagonists. Biological Control, 83, 20–28.Google Scholar
  36. Kokkonen, M., Ojala, L., Parikka, P., & Jestoi, M. (2010). Mycotoxin production of selected Fusarium species at different culture conditions. International Journal of Food Microbiology, 143(1–2), 17–25.  https://doi.org/10.1016/j.ijfoodmicro.2010.07.015.Google Scholar
  37. Kulik, T. (2008). Development of a duplex PCR assay for the simultaneous detection of Fusarium poae and Fusarium sporotrichioides from wheat. Journal of Plant Pathology, 90(3), 441–447.Google Scholar
  38. Kulik, T., & Jestoi, M. (2009). Quantification of Fusarium poae DNA and associated mycotoxins in asymptomatically contaminated wheat. International Journal of Food Microbiology, 130(3), 233–237.  https://doi.org/10.1016/j.ijfoodmicro.2009.01.036.Google Scholar
  39. Kulik, T., & Pszczólkowska, A. (2011). Multilocus sequence analysis of Fusarium poae. Journal of Plant Pathology, 93(1), 119–126.Google Scholar
  40. Kurchenko, I. M., & Tsyganenko, K. S. (2013). Trichothecene mycotoxins of Fusarium poae from different habitats. Mikrobiologichnii Zhurnal, 75(4), 29–32.Google Scholar
  41. Lemmens, M., Josephs, R., Schuhmacher, R., Grausgruber, H., Buerstmayr, H., Ruckenbauer, P., et al. (1997). Head blight (Fusarium spp.) on wheat: Investigations on the relationship between disease symptoms and mycotoxin content. Cereal Research Communications, 25(3), 459–465.Google Scholar
  42. Leslie, J. F., & Summerell, B. (2006). The Fusarium Laboratory Manual. In J. F. Leslie & B. A. Summerell (Eds.). Ames, Iowa: Blackwell publishing.  https://doi.org/10.1002/9780470278376.Google Scholar
  43. Lionetti, V., Giancaspro, A., Fabri, E., Giove, S. L., Reem, N., Zabotina, O. A., Blanco, A., Gadaleta, A., & Bellincampi, D. (2015). Cell wall traits as potential resources to improve resistance of durum wheat against Fusarium graminearum. BMC Plant Biology, 15, 1–15.  https://doi.org/10.1186/s12870-014-0369-1.Google Scholar
  44. Liu, W., Langseth, W., Skinnes, H., Elen, O. N., & Sundheim, L. (1997a). Comparison of visual head blight ratings, seed infection levels, and deoxynivalenol production for assessment of resistance in cereals inoculated with Fusarium culmorum. European Journal of Plant Pathology, 103(7), 589–595.Google Scholar
  45. Liu, W., Sundheim, L., & Langseth, W. (1997b). Trichothecene production and the relationship to vegetative compatibility groups in Fusarium poae. Mycopathologia, 140(2), 105–114.  https://doi.org/10.1023/A:1006858711024.Google Scholar
  46. Logrieco, A., Chelkowski, J., Bottalico, A., & Visconti, A. (1990). Further data on specific trichothecene production by Fusarium sect. Sporotrichiella strains. Mycological Research, 94(5), 587–589.  https://doi.org/10.1016/S0953-7562(09)80656-4.Google Scholar
  47. Logrieco, A., Bottalico, A., Mulè, G., Moretti, A., Perrone, G., Mulé, G., et al. (2003). Epidemiology of toxigenic fungi and their associated mycotoxins for some Mediterranean crops. European Journal of Plant Pathology, 109(7), 645–667.  https://doi.org/10.1023/A:1026033021542.Google Scholar
  48. Lukanowski, A., & Lenc, L. (2009). Inoculation of wheat ears with suspension of conidia of Fusarium culmorum and Fusarium langsethiae, fusarium head blight symptoms and mycological analysis of harvested kernels. Progress in Plant Protection, 49(2), 671–674.Google Scholar
  49. Martin, R., & Johnston, H. (1982). Effects and control of fusarium diseases of cereal grains in the Atlantic provinces. Canadian Journal of Plant Pathology, 4(2), 210–216.Google Scholar
  50. Mateo, J. J., Mateo, R., & Jiménez, M. (2002). Accumulation of type a trichothecenes in maize, wheat and rice by Fusarium sporotrichioides isolates under diverse culture conditions. International Journal of Food Microbiology, 72(1–2), 115–123.  https://doi.org/10.1016/S0168-1605(01)00625-0.Google Scholar
  51. Meier, U. (2001). Growth stages of mono-and dicotyledonous plants BBCH monograph. Agriculture.Google Scholar
  52. Mesterházy, Á., Bartók, T., Mirocha, C. G., & Komoróczy, R. (1999). Nature of wheat resistance to fusarium head blight and the role of deoxynivalenol for breeding. Plant Breeding, 118(2), 97–110.  https://doi.org/10.1046/j.1439-0523.1999.118002097.x.Google Scholar
  53. Morcia, C., Rattotti, E., Stanca, A. M., Tumino, G., Rossi, V., Ravaglia, S., et al. (2013). Fusarium genetic traceability: Role for mycotoxin control in small grain cereals agro-food chains. Journal of Cereal Science, 57(2), 175–182.  https://doi.org/10.1016/j.jcs.2012.09.016.Google Scholar
  54. Nazari, L., Pattori, E., Terzi, V., Morcia, C., & Rossi, V. (2014). Influence of temperature on infection, growth, and mycotoxin production by Fusarium langsethiae and F. sprotrichioides in durum wheat. Food Microbiology, 39, 19–26.  https://doi.org/10.1016/j.fm.2013.10.009.Google Scholar
  55. Nelson, P. E., Toussoun, T., & Marasas, W. F. O. (1983). Fusarium species, an illustrated manual for identification. University Park: Pennsylvania State University Press.Google Scholar
  56. Nicolaisen, M., Suproniene, S., Nielsen, L. K., Lazzaro, I., Spliid, N. H., & Justesen, A. F. (2009). Real-time PCR for quantification of eleven individual Fusarium species in cereals. Journal of Microbiological Methods, 76(3), 234–240.  https://doi.org/10.1016/j.mimet.2008.10.016.Google Scholar
  57. Nielsen, L. K., Jensen, J. D., Nielsen, G. C., Jensen, J. E., Spliid, N. H., Thomsen, I. K., Justesen, A. F., Collinge, D. B., & Jørgensen, L. N. (2011). Fusarium head blight of cereals in Denmark: Species complex and related mycotoxins. Phytopathology, 101(8), 960–969.  https://doi.org/10.1094/PHYTO-07-10-0188.Google Scholar
  58. O’Donnell, K., Rooney, A. P., Proctor, R. H., Brown, D. W., McCormick, S. P., Ward, T. J., Frandsen, R. J. N., Lysøe, E., Rehner, S. A., Aoki, T., Robert, V. A. R. G., Crous, P. W., Groenewald, J. Z., Kang, S., & Geiser, D. M. (2013). Phylogenetic analyses of RPB1 and RPB2 support a middle cretaceous origin for a clade comprising all agriculturally and medically important fusaria. Fungal genetics and biology : FG & B, 52, 20–31.  https://doi.org/10.1016/j.fgb.2012.12.004.Google Scholar
  59. Parikka, P., Hietaniemi, V., Rämö, S., & Jalli, H. (2007). The effect of cultivation practices on fusarium langsethiae infection of oats and barley. In Fusarium workshop: Fusarium diseases in cereals–potential impact from sustainable cropping systems (p. 15).Google Scholar
  60. Parry, D. W., Jenkinson, P., & McLeod, L. (1995). Fusarium ear blight (scab) in small grain cereals - a review. Plant Pathology, 44, 207–238.Google Scholar
  61. Pitt, J. I., & Hocking, A. D. (2009). Methods for isolation, enumeration and identification. In Fungi and food spoilage (pp. 19–52). Springer US.Google Scholar
  62. Polley, R., & Turner, J. (1995). Surveys of stem base diseases and fusarium ear diseases in winter wheat in England, Wales and Scotland, 1989–1990. Annals of Applied Biology, 126(1), 45–59.Google Scholar
  63. Proctor, R. H., McCormick, S. P., Alexander, N. J., & Desjardins, A. E. (2009). Evidence that a secondary metabolic biosynthetic gene cluster has grown by gene relocation during evolution of the filamentous fungus fusarium. Molecular Microbiology, 74(5), 1128–1142.  https://doi.org/10.1111/j.1365-2958.2009.06927.x.Google Scholar
  64. Richard, J. L. (2007). Some major mycotoxins and their mycotoxicoses-an overview. International Journal of Food Microbiology, 119(1–2), 3–10.  https://doi.org/10.1016/j.ijfoodmicro.2007.07.019.Google Scholar
  65. Rossi, V., Giosuè, S., Pattori, E., & Languasco, L. (2001). Risk of fusarium head blight on wheat: A preliminary model. In 11th Congress of the Mediterranean Phytopathological Union (Vol. 17-20 September 2001, pp. 46–48). Evora.Google Scholar
  66. Rossi, V., Terzi, V., Moggi, F., Morcia, C., Faccioli, P., Haidukowski, M., & Pascale, M. (2007). Assessment of fusarium infection in wheat heads using a quantitative polymerase chain reaction (qPCR) assay. Food Additives and Contaminants, 24(10), 1121–1230.  https://doi.org/10.1080/02652030701551818.Google Scholar
  67. Schnerr, H., Vogel, R. F., & Niessen, L. (2002). Correlation between DNA of trichothecene-producing Fusarium species and deoxynivalenol concentrations in wheat-samples. Letters in Applied Microbiology, 35(2), 121–125.  https://doi.org/10.1046/j.1472-765X.2002.01146.x.Google Scholar
  68. Snijders, C., & Krechting, C. (1992). Inhibition of deoxynivalenol translocation and fungal colonization in fusarium head blight resistant wheat. Canadian Journal of Botany, 70(8), 1570–1576.Google Scholar
  69. Somma, S., Alvarez, C., Ricci, V., Ferracane, L., Ritieni, A., Logrieco, A., & Moretti, A. (2010). Trichothecene and beauvericin mycotoxin production and genetic variability in fusarium poae isolated from wheat kernels from northern Italy. Food additives & contaminants. Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment, 27(5), 729–737.  https://doi.org/10.1080/19440040903571788.Google Scholar
  70. Stenglein, S. A. (2009). Fusarium poae: A pathogen that needs more attention. Journal of Plant Pathology, 91(1), 25–36.  https://doi.org/10.4454/jpp.v91i1.621.Google Scholar
  71. Stenglein, S. a., Dinolfo, M. I., Bongiorno, F., & Moreno, M. V. (2012). Response of wheat (Triticum spp.) and barley (Hordeum vulgare) to Fusarium poae. Agrociencia, 46(3), 299–306.Google Scholar
  72. Stenglein, S. A., Dinolfo, M. I., Barros, G., Bongiorno, F., Chulze, S., & Moreno, M. (2014). Fusarium poae pathogenicity and mycotoxin accumulation on selected wheat and barley genotypes at a single location in Argentina. Plant Disease, 98, 1733–1738.Google Scholar
  73. Stępień, Ł., & Chełkowski, J. (2010). Fusarium head blight of wheat: Pathogenic species and their mycotoxins. World Mycotoxin Journal, 3(2), 107–119.  https://doi.org/10.3920/WMJ2009.1193.Google Scholar
  74. Terzi, V., Morcia, C., Faccioli, P., Faccini, N., Rossi, V., Cigolini, M., Corbellini, M., Scudellari, D., & Delogu, G. (2007). Fusarium DNA traceability along the bread production chain. International Journal of Food Science & Technology, 42(12), 1390–1396.  https://doi.org/10.1111/j.1365-2621.2006.01344.x.Google Scholar
  75. Thrane, U., Adler, A., Clasen, P.-E. P. E., Galvano, F., Langseth, W., Lew, H., et al. (2004). Diversity in metabolite production by Fusarium langsethiae, Fusarium poae, and Fusarium sporotrichioides. International Journal of Food Microbiology, 95(3), 257–266.  https://doi.org/10.1016/j.ijfoodmicro.2003.12.005.Google Scholar
  76. Torp, M., & Nirenberg, H. I. (2004). Fusarium langsethiae sp. nov. on cereals in Europe. International Journal of Food Microbiology, 95(3), 247–256.  https://doi.org/10.1016/j.ijfoodmicro.2003.12.014.Google Scholar
  77. Vanheule, A., De Boevre, M., Moretti, A., Scauflaire, J., Munaut, F., De Saeger, S., et al. (2017). Genetic divergence and chemotype diversity in the fusarium head blight pathogen Fusarium poae. Toxins, 9(9), 255.  https://doi.org/10.3390/toxins9090255.Google Scholar
  78. Vargo, R., & Baumer, J. (1986). Fusarium sporotrichioides as a pathogen of spring wheat. Plant Disease, 70, 629–631.Google Scholar
  79. Vogelgsang, S., Sulyok, M., Hecker, A., Jenny, E., Krska, R., Schuhmacher, R., & Forrer, H.-R. (2008). Toxigenicity and pathogenicity of Fusarium poae and Fusarium avenaceum on wheat. European Journal of Plant Pathology, 122(2), 265–276.  https://doi.org/10.1007/s10658-008-9279-0.Google Scholar
  80. Waalwijk, C., van der Heide, R., de Vries, I., van der Lee, T., Schoen, C., Costrel-de Corainville, G., Häuser-Hahn, I., Kastelein, P., Köhl, J., Lonnet, P., Demarquet, T., & Kema, G. H. J. (2004). Quantitative detection of Fusarium species in wheat using TaqMan. European Journal of Plant Pathology, 110(5/6), 481–494.  https://doi.org/10.1023/B:EJPP.0000032387.52385.13.Google Scholar
  81. Xu, X.-M., Nicholson, P., Thomsett, M. A., Simpson, D., Cooke, B. M., Doohan, F. M., et al. (2008). Relationship between the fungal complex causing fusarium head blight of wheat and environmental conditions. Phytopathology, 98(1), 69–78.  https://doi.org/10.1094/PHYTO-98-1-0069.Google Scholar
  82. Yli-Mattila, T., & Gagkaeva, T. (2016). Fusarium toxins in cereals in northern Europe and Asia in applications of Fungi and their management strategies. In S. K. Deshmukh, J. K. Misra, & P. Jalpa (Eds.), Fungi: Applications and Management Strategies (pp. 293–317). CRC Press.Google Scholar
  83. Yli-Mattila, T., Paavanen-Huhtala, S., Jestoi, M., Parikka, P., Hietaniemi, V., Gagkaeva, T., Sarlin, T., Haikara, A., Laaksonen, S., & Rizzo, A. (2008). Real-time PCR detection and quantification of Fusarium poae, F. graminearum, F. sporotrichioides and F. langsethiae in cereal grains in Finland and Russia. Archives of Phytopathology and Plant Protection, 41(4), 243–260.  https://doi.org/10.1080/03235400600680659.Google Scholar
  84. Yli-Mattila, T., Parikka, P., Lahtinen, T., Ramo, S., Kokkonen, M., Rizzo, A., et al. (2009). Fusarium DNA levels in Finnish cereal grains. In Y. Gherbawy, L. Mach, & M. Rai (Eds.), Current advances in molecular mycology (pp. 107–138). New York: Nova Science Publishers Inc..Google Scholar
  85. Yli-Mattila, T., Ward, T. J., O’Donnell, K., Proctor, R. H., Burkin, A. A., Kononenko, G. P., et al. (2011). Fusarium sibiricum sp. nov, a novel type a trichothecene-producing fusarium from northern Asia closely related to F. sporotrichioides and F. langsethiae. International Journal of Food Microbiology, 147(1), 58–68.  https://doi.org/10.1016/j.ijfoodmicro.2011.03.007.Google Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2019

Authors and Affiliations

  • L. Nazari
    • 1
    • 2
  • E. Pattori
    • 1
  • S. Somma
    • 3
  • V. Manstretta
    • 1
    • 4
  • C. Waalwijk
    • 5
  • A. Moretti
    • 3
  • G. Meca
    • 6
  • V. Rossi
    • 1
    Email author
  1. 1.DIPROVESUniversità Cattolica del Sacro CuorePiacenzaItaly
  2. 2.Horticulture Crops Research Department, Fars Agricultural and Natural Resources Research and Education CenterAREEOShirazIran
  3. 3.Institute of Science of Food ProductionCNRBariItaly
  4. 4.Horta srlPiacenzaItaly
  5. 5.Biointeractions and Plant HealthPlant Research InternationalWageningenThe Netherlands
  6. 6.Laboratory of Food Chemistry and Toxicology, Faculty of PharmacyUniversity of ValenciaBurjassotSpain

Personalised recommendations