European Journal of Plant Pathology

, Volume 153, Issue 2, pp 645–650 | Cite as

Horizontal and vertical transmission of the hypovirulence-associated mycovirus Fusarium oxysporum f. sp. dianthi virus 1

  • Carlos G. Lemus-Minor
  • M. Carmen Cañizares
  • M. D. García-Pedrajas
  • Encarnación Pérez-ArtésEmail author


Mycovirus Fusarium oxysporum f. sp. dianthi virus 1 (FodV1) has been recently described infecting isolate Fod 116 of Fusarium oxysporum f. sp. dianthi (Fod). FodV1 is a new member of the family Chrysoviridae, and its genome consists of four dsRNA segments ranging from 2.6 to 3.5 kb. Presence of high levels of FodV1 in its original fungal host correlated with alteration of some phenotypic traits, including virulence. In this work we have analysed if FodV1 can be transferred horizontally to another Fod isolate by hyphal anastomosis, and vertically through conidiation, and if the mycovirus accumulates in the recipient isolate at similar levels that those found in the donor one. Moreover, we have investigated if the new virus-infected isolate reproduces the same phenotypic alterations that the original virus-infected does. Results indicated that FodV1 transfers horizontally between compatible isolates by hyphal anastomosis, reaching a high level of accumulation in the recipient isolate, and vertically during sporogenesis. Presence of FodV1 in the new fungal host reduced the growth rate and altered the morphology of the colony on solid medium, and diminished the conidiation rate in liquid medium. More interestingly, FodV1 induced hypovirulence in its new fungal host. Results contained in this work constitute the basis for further research on the application of mycovirus FodV1 to the control of Fusarium wilt diseases.


Biological control Carnation Chrysoviridae Fusarium wilt 



This research was supported by Grants AGL 2010-18279, from the Spanish Ministry of Science and Innovation, and AGL 2013-48980-R, from the Spanish Ministry of Economy and Competitiveness, co-funded by the European Union (FEDER funds). We thank Antonio Valverde for their valuable technical assistance and Emilio A. Cano (Barberet & Blanc, Dümmen Orange) for providing carnation cultivars.


This research was supported by Grants AGL 2010–18279, from the Spanish Ministry of Science and Innovation, and AGL 2013–48980-R, from the Spanish Ministry of Economy and Competitiveness, co-funded by the European Union (FEDER funds).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. Darissa, O., Adam, G., & Schafer, W. (2012). A dsRNA mycovirus causes hypovirulence of Fusarium graminearum to wheat and maize. European Journal of Plant Pathology, 134(1), 181–189. Scholar
  2. Ghabrial, S. A., & Suzuki, N. (2009). Viruses of plant pathogenic fungi. Annual Review of Phytopathology, 47, 353–384. Scholar
  3. Ghabrial, S. A., Castón, J. R., Jiang, D., Nibert, M. L., & Suzuki, N. (2015). 50-plus years of fungal viruses. Journal of Virology, 479–480(0), 356–368.
  4. Gómez-Lama Cabanás, C., & Pérez-Artés, E. (2014). New evidence of intra-race diversity in Fusarium oxysporum f. sp. dianthi populations based on vegetative compatibility groups. European Journal of Plant Pathology, 139(3), 445–451. Scholar
  5. Gómez-Lama Cabanás, C., Valverde-Corredor, A., & Pérez-Artés, E. (2012). Molecular analysis of Spanish populations of Fusarium oxysporum f. sp. dianthi demonstrates a high genetic diversity and identifies virulence groups in races 1 and 2 of the pathogen. European Journal of Plant Pathology, 132(4), 561–576. Scholar
  6. Lee, K.-M., Yu, J., Son, M., Lee, Y.-W., & Kim, K.-H. (2011). Transmission of Fusarium boothii mycovirus via protoplast fusion causes hypovirulence in other phytopathogenic fungi. PLoS One, 6(6), e21629. Scholar
  7. Lee, K. M., Cho, W. K., Yu, J., Son, M., Choi, H., Min, K., et al. (2014). A comparison of transcriptional patterns and mycological phenotypes following infection of Fusarium graminearum by four mycoviruses. Plos One, 9(6), 11. Scholar
  8. Lemus-Minor, C. G., Cañizares, M. C., García-Pedrajas, M. D., & Pérez-Artés, E. (2015). Complete genome sequence of a novel dsRNA mycovirus isolated from the phytopathogenic fungus Fusarium oxysporum f. sp. dianthi. Archives of Virology, 160, 2375-2379.
  9. Lemus-Minor, C. G., Cañizares, M. C., García-Pedrajas, M. D., & Pérez-Artés, E. (2018). Fusarium oxysporum f. sp. dianthi virus 1 accumulation is correlated with changes in virulence and other phenotypic traits of its fungal host. Phytopathology, 108(8), 957-963.
  10. Pearson, M. N., Beever, R. E., Boine, B., & Arthur, K. (2009). Mycoviruses of filamentous fungi and their relevance to plant pathology. Molecular Plant Pathology, 10(1), 115–128. Scholar
  11. Urayama, S., Ohta, T., Onozuka, N., Sakoda, H., Fukuhara, T., Arie, T., Teraoka, T., & Moriyama, H. (2012). Characterization of Magnaporthe oryzae chrysovirus 1 structural proteins and their expression in Saccharomyces cerevisiae. Journal of Virology, 86(15), 8287–8295. Scholar
  12. Urayama, S.-I., Sakoda, H., Takai, R., Katoh, Y., Tuong Minh, L., Fukuhara, T., et al. (2014). A dsRNA mycovirus, Magnaporthe oryzae chrysovirus 1-B, suppresses vegetative growth and development of the rice blast fungus. Virology, 448, 265–273. Scholar
  13. Xie, J., & Jiang, D. (2014). New insights into mycoviruses and exploration for the biological control of crop fungal diseases. Annu Rev Phytopathol, 52(1), 45–68. Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2018

Authors and Affiliations

  • Carlos G. Lemus-Minor
    • 1
  • M. Carmen Cañizares
    • 2
  • M. D. García-Pedrajas
    • 2
  • Encarnación Pérez-Artés
    • 1
    Email author
  1. 1.Department of Crop Protection, Instituto de Agricultura SostenibleConsejo Superior de Investigaciones Científicas (IAS-CSIC)CórdobaSpain
  2. 2.Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Estación Experimental “La Mayora”Universidad de MálagaMálagaSpain

Personalised recommendations