Advertisement

European Journal of Plant Pathology

, Volume 152, Issue 4, pp 993–1001 | Cite as

Bioinformatics tools for the discovery of new lipopeptides with biocontrol applications

  • M. Pupin
  • A. Flissi
  • P. Jacques
  • Valérie LeclèreEmail author
SI: Plant Pathology for Innovative Agroecology
  • 195 Downloads

Abstract

As conventional or chemical pesticides have negative impact on environment and health of both farmer and consumers, it becomes relevant to develop alternative solutions to limit their use. In this context, innovative strategies to accelerate the development of biocontrol agents are welcome. For a decade of years, it has been demonstrated that lipopeptides are very efficient weapons against fungi responsible for crop diseases. Lipopeptides are secondary metabolites, produced by many microorganisms including beneficial rhizobacteria. The lipopeptide biosynthetic pathways include nonribosomal peptide synthetases. These modular enzymatic complexes work as assembly lines to build the peptides step by step, leading to the production of original peptide compounds with specific features as the presence of non proteinogenic monomers and cyclic and branched structures. In this paper, Florine and Norine bioinformatics tools, especially dedicated to non-ribosomal synthetases and their products are presented. Their use is mainly focused on the discovery of lipopeptides produced by Bacillus or Pseudomonas because they seem to represent a versatile reservoir of active secondary metabolites with promising activities for applications in phytosanitary area.

Keywords

NRPS Lipopeptide Biocontrol Bioinformatics Norine 

Notes

Acknowledgements

This work has been carried out in the framework of Alibiotech project which is financed by European Union, French State and the French Region of Hauts-de-France. Authors would like to thank European Union funding through the INTERREG V France-Wallonie-Vlaanderen Project SmartBioControl/BioScreen and the bioinformatics platform bilille.

Compliance with ethical standards

Conflict of interest

No Disclosure of potential conflicts of interest.

Human and animal rights

No Research involving Human Participants and/or Animals.

Informed consent

Yes

References

  1. Balibar, C. J., Vaillancourt, F. H., & Walsh, C. T. (2005). Generation of D amino acid residues in assembly of arthrofactin by dual condensation/epimerization domains. Chemistry & Biology, 12, 1189–1200.  https://doi.org/10.1016/j.chembiol.2005.08.010.CrossRefGoogle Scholar
  2. Béchet, M., Castéra-Guy, J., Guez, J.-S., et al. (2013). Production of a novel mixture of mycosubtilins by mutants of Bacillus subtilis. Bioresource Technology, 145, 264–270.  https://doi.org/10.1016/j.biortech.2013.03.123.CrossRefGoogle Scholar
  3. Benítez, T., Rincón, A. M., Limón, M. C., & Codón, A. C. (2004). Biocontrol mechanisms of Trichoderma strains. International Microbiology, 7, 249–260.Google Scholar
  4. Biggins, J. B., Kang, H.-S., Ternei, M. A., et al. (2014). The chemical arsenal of Burkholderia pseudomallei is essential for pathogenicity. Journal of American Chemical Societies, 136, 9484–9490.  https://doi.org/10.1021/ja504617n.CrossRefGoogle Scholar
  5. Blin, K., Medema, M. H., Kazempour, D., et al. (2013). antiSMASH 2.0—A versatile platform for genome mining of secondary metabolite producers. Nucleic Acids Research, 41, W204–W212.  https://doi.org/10.1093/nar/gkt449.CrossRefGoogle Scholar
  6. Blin, K., Kim, H. U., Medema, M. H., & Weber, T. (2017). Recent development of antiSMASH and other computational approaches to mine secondary metabolite biosynthetic gene clusters. Brief Bioinformatics.  https://doi.org/10.1093/bib/bbx146.
  7. Bloudoff, K., & Schmeing, T. M. (2017). Structural and functional aspects of the nonribosomal peptide synthetase condensation domain superfamily: Discovery, dissection and diversity. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 1865, 1587–1604.  https://doi.org/10.1016/j.bbapap.2017.05.010.CrossRefGoogle Scholar
  8. Caboche, S., Pupin, M., Leclère, V., et al. (2008). NORINE: A database of nonribosomal peptides. Nucleic Acids Research, 36, D326–D331.CrossRefGoogle Scholar
  9. Caradec, T., Pupin, M., Vanvlassenbroeck, A., et al. (2014). Prediction of monomer isomery in Florine: A workflow dedicated to nonribosomal peptide discovery. PLoS One, 9, e85667.  https://doi.org/10.1371/journal.pone.0085667.CrossRefGoogle Scholar
  10. Chevrette, M. G., Aicheler, F., Kohlbacher, O., et al. (2017). SANDPUMA: Ensemble predictions of nonribosomal peptide chemistry reveal biosynthetic diversity across Actinobacteria. Bioinformatics, 33, 3202–3210.  https://doi.org/10.1093/bioinformatics/btx400.CrossRefGoogle Scholar
  11. Chowdhury, S. P., Hartmann, A., Gao, X., & Borriss, R. (2015). Biocontrol mechanism by root-associated Bacillus amyloliquefaciens FZB42 – A review. Frontiers in Microbiology, 6.  https://doi.org/10.3389/fmicb.2015.00780.
  12. D’aes, J., Kieu, N. P., Leclère, V., et al. (2014). To settle or to move? The interplay between two classes of cyclic lipopeptides in the biocontrol strain Pseudomonas CMR12a. Environmental Microbiology, 16, 2282–2300.  https://doi.org/10.1111/1462-2920.12462.CrossRefGoogle Scholar
  13. de Bruijn, I., de Kock, M. J. D., Yang, M., et al. (2007). Genome-based discovery, structure prediction and functional analysis of cyclic lipopeptide antibiotics in Pseudomonas species. Molecular Microbiology, 63, 417–428.  https://doi.org/10.1111/j.1365-2958.2006.05525.x.CrossRefGoogle Scholar
  14. Esmaeel, Q., Pupin, M., Kieu, N. P., et al. (2016). Burkholderia genome mining for nonribosomal peptide synthetases reveals a great potential for novel siderophores and lipopeptides synthesis. MicrobiologyOpen, 5, 512–526.  https://doi.org/10.1002/mbo3.347.CrossRefGoogle Scholar
  15. Flissi, A., Dufresne, Y., Michalik, J., et al. (2016). Norine, the knowledgebase dedicated to non-ribosomal peptides, is now open to crowdsourcing. Nucleic Acids Research, 44, D1113–D1118.  https://doi.org/10.1093/nar/gkv1143.CrossRefGoogle Scholar
  16. Harman, G. E. (2006). Overview of mechanisms and uses of Trichoderma spp. Phytopathology, 96, 190–194.  https://doi.org/10.1094/PHYTO-96-0190.CrossRefGoogle Scholar
  17. Leclère, V., Béchet, M., Adam, A., et al. (2005). Mycosubtilin overproduction by Bacillus subtilis BBG100 enhances the organism’s antagonistic and biocontrol activities. Applied and Environmental Microbiology, 71, 4577–4584.  https://doi.org/10.1128/AEM.71.8.4577-4584.2005.CrossRefGoogle Scholar
  18. Leclère, V., Marti, R., Béchet, M., et al. (2006). The lipopeptides mycosubtilin and surfactin enhance spreading of Bacillus subtilis strains by their surface-active properties. Archives in Microbiology, 186, 475–483.  https://doi.org/10.1007/s00203-006-0163-z.CrossRefGoogle Scholar
  19. Ma, Z., Ongena, M., & Höfte, M. (2017). The cyclic lipopeptide orfamide induces systemic resistance in rice to Cochliobolus miyabeanus but not to Magnaporthe oryzae. Plant Cell Reports, 36, 1731–1746.  https://doi.org/10.1007/s00299-017-2187-z.CrossRefGoogle Scholar
  20. Martínez Núñez, M. A., & López y Lopez, V. E. L. (2016). Nonribosomal peptides synthetases and their applications in industry. Sustain Chemistry Process, 4, 13.  https://doi.org/10.1186/s40508-016-0057-6.CrossRefGoogle Scholar
  21. Medema, M. H., Blin, K., Cimermancic, P., et al. (2011). antiSMASH: Rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. Nucleic Acids Research, 39, W339–W346.  https://doi.org/10.1093/nar/gkr466.CrossRefGoogle Scholar
  22. Mihalache, G., Balaes, T., Gostin, I., et al. (2017). Lipopeptides produced by Bacillus subtilis as new biocontrol products against fusariosis in ornamental plants. Environmental Sciences and Pollution Research, 1–10.  https://doi.org/10.1007/s11356-017-9162-7.
  23. Mnif, I., & Ghribi, D. (2015). Microbial derived surface active compounds: Properties and screening concept. World Journal of Microbiology Biotechnology, 31, 1001–1020.  https://doi.org/10.1007/s11274-015-1866-6.CrossRefGoogle Scholar
  24. Ongena, M., & Jacques, P. (2008). Bacillus lipopeptides: Versatile weapons for plant disease biocontrol. Trends in Microbiology, 16, 115–125.  https://doi.org/10.1016/j.tim.2007.12.009.CrossRefGoogle Scholar
  25. Raaijmakers, J. M., de Bruijn, I., & de Kock, M. J. D. (2006). Cyclic lipopeptide production by plant-associated Pseudomonas spp.: Diversity, activity, biosynthesis, and regulation. Molecular Plant-Microbe Interactions, 19, 699–710.  https://doi.org/10.1094/MPMI-19-0699.CrossRefGoogle Scholar
  26. Raaijmakers, J. M., de Bruijn, I., Nybroe, O., & Ongena, M. (2010). Natural functions of lipopeptides from Bacillus and Pseudomonas: More than surfactants and antibiotics. FEMS Microbiological Reviews, 34, 1037–1062.  https://doi.org/10.1111/j.1574-6976.2010.00221.x.CrossRefGoogle Scholar
  27. Radhakrishnan, R., Hashem, A., & Abd_Allah, E. F. (2017). Bacillus: A biological tool for crop improvement through bio-molecular changes in adverse environments. Frontiers in Physiology, 8, 667.  https://doi.org/10.3389/fphys.2017.00667.CrossRefGoogle Scholar
  28. Rausch, C., Hoof, I., Weber, T., et al. (2007). Phylogenetic analysis of condensation domains in NRPS sheds light on their functional evolution. BMC Evolutionary Biology, 7, 78.  https://doi.org/10.1186/1471-2148-7-78.CrossRefGoogle Scholar
  29. Rokni-Zadeh, H., Mangas-Losada, A., & Mot, R. D. (2011). PCR detection of novel non-ribosomal peptide synthetase genes in lipopeptide-producing Pseudomonas. Microbial Ecology, 62, 941.  https://doi.org/10.1007/s00248-011-9885-9.CrossRefGoogle Scholar
  30. Roongsawang, N., Washio, K., & Morikawa, M. (2011). Diversity of nonribosomal peptide synthetases involved in the biosynthesis of lipopeptide biosurfactants. International Journal of Molecular Science, 12, 141–172.  https://doi.org/10.3390/ijms12010141.CrossRefGoogle Scholar
  31. Röttig, M., Medema, M. H., Blin, K., et al. (2011). NRPSpredictor2—A web server for predicting NRPS adenylation domain specificity. Nucleic Acids Research, 39, W362–W367.  https://doi.org/10.1093/nar/gkr323.CrossRefGoogle Scholar
  32. Royer, M., Koebnik, R., Marguerettaz, M., et al. (2013). Genome mining reveals the genus Xanthomonas to be a promising reservoir for new bioactive non-ribosomally synthesized peptides. BMC Genomics, 14, 658.  https://doi.org/10.1186/1471-2164-14-658.CrossRefGoogle Scholar
  33. Strieker, M., Tanović, A., & Marahiel, M. A. (2010). Nonribosomal peptide synthetases: Structures and dynamics. Current Opinion in Structural Biology, 20, 234–240.  https://doi.org/10.1016/j.sbi.2010.01.009.CrossRefGoogle Scholar
  34. Tapi, A., Chollet-Imbert, M., Scherens, B., & Jacques, P. (2010). New approach for the detection of non-ribosomal peptide synthetase genes in Bacillus strains by polymerase chain reaction. Applied Microbiology Biotechnology, 85, 1521–1531.  https://doi.org/10.1007/s00253-009-2176-4.CrossRefGoogle Scholar
  35. Weber, T., Blin, K., Duddela, S., et al. (2015). antiSMASH 3.0—A comprehensive resource for the genome mining of biosynthetic gene clusters. Nucleic Acids Research, 43, W237–W243.  https://doi.org/10.1093/nar/gkv437.CrossRefGoogle Scholar
  36. Weller, D. M. (2007). Pseudomonas biocontrol agents of soilborne pathogens: Looking back over 30 years. Phytopathology, 97, 250–256.  https://doi.org/10.1094/PHYTO-97-2-0250.CrossRefGoogle Scholar
  37. Ziemert, N., Podell, S., Penn, K., et al. (2012). The natural product domain seeker NaPDoS: A phylogeny based bioinformatic tool to classify secondary metabolite gene diversity. PLoS One, 7, e34064.  https://doi.org/10.1371/journal.pone.0034064.CrossRefGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2018

Authors and Affiliations

  • M. Pupin
    • 1
    • 2
  • A. Flissi
    • 1
    • 2
  • P. Jacques
    • 3
  • Valérie Leclère
    • 4
    Email author
  1. 1.Univ. Lille, CNRS, Centrale Lille, UMR 9189 - CRIStAL - Centre de Recherche en Informatique Signal et Automatique de LilleLilleFrance
  2. 2.Inria-Lille Nord Europe, Bonsai TeamVilleneuve d’Ascq CedexFrance
  3. 3.TERRA Research Centre, Microbial Processes and Interactions (MiPI), Gembloux Agro-Bio Tech University of LiegeGemblouxBelgium
  4. 4.Univ. Lille, INRA, ISA, Univ. Artois, Univ. Littoral Côte d’Opale, EA 7394-ICV- Institut Charles ViolletteLilleFrance

Personalised recommendations