Advertisement

European Journal of Plant Pathology

, Volume 152, Issue 3, pp 801–813 | Cite as

Functional characterization of CgPBS2, a MAP kinase kinase in Colletotrichum gloeosporioides, using osmotic stress sensitivity as a selection marker

  • Chunhua Lin
  • Guixiu Huang
  • Fucong Zheng
  • Weiguo Miao
Article

Abstract

Colletotrichum leaf disease of Hever brasiliensis (rubber tree) caused by C. gloeosporioides is one of the major causes of declining rubber tree yields. Little is known about the fungal molecular characters that are important for pathogenicity on rubber tree and fungicide resistance. In this study, we cloned the CgPBS2 gene, the key component of the Hog1 pathway which controls various aspects of osmoregulation and fungicide resistance in various fungal pathogens, including the causal agent of Colletotrichum leaf disease of rubber tree. We characterized the function of the CgPBS2 gene by reverse genetics. Because the Hog1 pathway plays an important role in stress responses, we obtained a CgPBS2 gene deletion mutant by PEG-mediated transformation of protoplasts after reducing the concentration of sucrose in the screening medium from 1.0 M to 0.2 M. Then, the complemented transformants and GFP-labelled CgPBS2 gene transformants were selected directly under highly hyperosmotic medium (PDA + 1.5 M sorbitol) without using other selectable gene markers. Phenotypic observations showed that the CgPBS2 protein was mainly localized in the conidial cytoplasm of the CgPBS2-GFP transformants. In addition, disruption of CgPBS2 led to sensitivity to hyperosmosis and high salt concentration as well as resistance to the fungicide fludioxonil. No obvious difference in virulence was observed between the null mutant and the wild-type strain. These results provide insights into the role of the CgPBS2 gene in osmotic stress, salt stress and fludioxonil resistance and suggest that osmotic stress sensitivity can be used as a selection marker.

Keywords

CgPBS2 MAP kinase kinase Osmotic stress Selection marker Colletotrichum gloeosporioides Hevea brasiliensis 

Notes

Acknowledgements

This research was supported by the National Natural Science Foundation of China (No. 31760499, No.31201468) and the earmarked fund for China Agriculture Research System (No. CARS-33-GW-BC1).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Human participants and animal studies

This research did not involve human participants or animals.

References

  1. Alonso-Monge, R., Navarro-Garcia, F., Roman, E., Negredo, A. I., Eisman, B., Nombela, C., & Pla, J. (2003). The Hog1 mitogen-activated protein kinase is essential in the oxidative stress response and chlamydospore formation in Candida albicans. Eukaryotic Cell, 2, 351–361.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bahn, Y. S., Kojima, K., Cox, G. M., & Heitman, J. (2006). A unique fungal two-component system regulates stress responses, drug sensitivity, sexual development, and virulence of Cryptococcus neoformans. Molecular Biology of the Cell, 17, 3122–3135.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Boguslawski, G. (1992). PBS 2, a yeast gene encoding a putative protein kinase, interacts with the RAS2 pathway and affects osmotic sensitivity of Saccharomyces cerevisiae. Journal of General Microbiology, 138, 2425–2432.CrossRefPubMedGoogle Scholar
  4. Cai, Z. Y., Li, G. H., Lin, C. H., Shi, T., Zhai, L. G., Chen, Y. P., & Huang, G. X. (2013). Identifying pathogenicity genes in the rubber tree anthracnose fungus Colletotrichum gloeosporioides through random insertional mutangenesis. Microbiological Research, 168, 340–350.CrossRefPubMedGoogle Scholar
  5. Catlett, N. L., Lee, B. N., Yoder, O. C., & Turgeon, B. G. (2003). Split-marker recombination for efficient targeted deletion of fungal genes. Fungal Genetics Newsletter, 50, 9–11.CrossRefGoogle Scholar
  6. Chang, L., & Karin, M. (2001). Mammalian MAP kinase signaling cascades. Nature, 410(1), 37–40.CrossRefPubMedGoogle Scholar
  7. Dixon, K. P., Xu, J. R., Smirnoff, N., & Talbo, t. N. J. (1999). Independent signaling pathways regulate cellular turgor during hyperosmotic stress and appressorium-mediated plant infection by Magnaporthe grisea. Plant Cell, 11, 2045–2058.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Du, C., Sarfati, J., Latge, J. P., & Calderone, R. (2006). The role of the sakA (Hog1) and tcsB (S1n1) genes in the oxidant adaptation of Aspergillus fumigatus. Medical Mycology, 44, 211–218.CrossRefPubMedGoogle Scholar
  9. Gritz, L., & Davies, J. (1983). Plasmid-encoded hygromycin B resistance: The sequence of hygromycin B phosphotransferase gene and its expression in Escherichia coli and Saccharomyces cerevisiae. Gene, 25, 179–188.CrossRefPubMedGoogle Scholar
  10. Gustin, M. C., Albertyn, J., Alexander, M., & Davenport, K. (1998). MAPkinase pathways in the yeast Saccharomyces cerevisiae. Microbiology and Molecular Biology Reviews, 62, 1264–1300.PubMedPubMedCentralGoogle Scholar
  11. Hohmann, S., Krantz, M., & Nordlander, B. (2007). Yeast osmoregulation. Methods in Enzymology, 428, 29–45.CrossRefPubMedGoogle Scholar
  12. Igbaria, A., Lev, S., Rose, M. S., Lee, B. N., Hadar, R., Deqani, Q., & Horwitz, B. A. (2008). Distinct and combined roles of the MAP kinases of Cochliobolus heterostrophus in virulence and stress responses. Molecular Plant - Microbe Interactions, 21, 769–780.CrossRefPubMedGoogle Scholar
  13. Jayashinghe, C. K., Fernando, T. H., & Priyanka, U. M. (1997). Colletotrichum acutatum is the main cause of Colletotrichum leaf disease of rubber in Sri Lanka. Mycopathologia, 137, 53–56.CrossRefGoogle Scholar
  14. Kojima, K., Takano, Y., Yoshimi, A., Tanaka, C., Kikuchi, T., & Okuno, T. (2004). Fungicide activity through activation of a fungal signaling pathway. Molecular Microbiology, 53(6), 1785–1796.CrossRefPubMedGoogle Scholar
  15. Kovar, J. L., Zhang, J., Funke, R. P., & Weeks, D. P. (2002). Molecular analysis of the acetolactate synthase gene of Chlamydomonas reinhardtii and development of a genetically engineered gene as a dominant selectable marker for genetic transformation. The Plant Journal, 29(1), 109–117.CrossRefPubMedGoogle Scholar
  16. Kuwano, T., Shirataki, C., & Itoh, Y. (2008). Comparison between polyethyleneglycol- and polyethylenimine– Mediated transformation of Aspergillus nidulans. Current Genetics, 54, 95–103.CrossRefPubMedGoogle Scholar
  17. Lin, C. H., Cai, Z. Y., Shi, T., Dai, Y. K., Li, C. P., & Huang, G. X. (2013). The use of T-DNA tagging to isolate mutants of Colletotrichum gloeosporioides and Colletotrichum acutatum with reduced virulence against Hevea brasiliensis. Forest Pathology, 43, 289–296.CrossRefGoogle Scholar
  18. Lin, C. H., Liu, X. B., Shi, T., Li, C. P., & Huang, G. X. (2018). The Colletotrichum gloeosporioides perilipin homologue CAP20 regulates functional appressorial formation and fungal virulence. Journal of Phytopathology, 166, 216–225.CrossRefGoogle Scholar
  19. Mehrabi, R., Zwiers, L. H., de Waard, M.A., Kema, G.H. (2006). MgHog1 regulates dimorphism and pathogenicity in the fungal wheat pathogen Mycosphaerella graminicola. Molecular Plant-Microbe Interactions, 11, 1262–1269.Google Scholar
  20. Mohler, W. A., & Blau, H. M. (1994). Membrane-bound neomycin phosphotransferase confers drug-resistance in mammalian cells: A marker for high-efficiency targeting of genes encoding secreted and cell-surface proteins. Somatic Cell and Molecular Genetics, 20(3), 153–162.CrossRefPubMedGoogle Scholar
  21. Moriwaki, A., Kihara, J., Mori, C., & Arase, S. (2007). A MAP kinase gene, BMK1, is required for conidiation and pathogenicity in the rice leaf spot pathogen Bipolaris oryzae. Microbiological Research, 162, 108–114.CrossRefPubMedGoogle Scholar
  22. Park, S. H., Choi, E. S., Kim, M. J., Cha, B. J., Yang, M. S., & Kim, D. H. (2004). Characterization of HOG1 homologue, CpMK1, from Cryphonectria parasitica and evidence for hypovirus-mediated perturbation of its phosphorylation in response to hypertonic stress. Molecular Microbiology, 51, 1267–1277.CrossRefPubMedGoogle Scholar
  23. Posas, F., & Saito, H. (1997). Osmotic activation of the HOG MAPK pathway via Ste11p MAPKKK: Scaffold role of Pbs2p MAPKK. Science, 276, 1702–1705.CrossRefPubMedGoogle Scholar
  24. Reyes, G., Romans, A., Nguyen, C. K., & May, G. S. (2006). Novel mitogen-activated protein kinase MpkC of Aspergillus fumigates is required for utilization of polyalcohol sugars. Eukaryotic Cell, 5, 1934–1940.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Rispail, N., Soanes, D. M., Ant, C., Czajowski, R., Grünler, A., Huguet, R., Perez-Nadales, E., Poli, A., Sartorel, E., Valiante, V., Yang, M., Beffa, R., Brakhage, A. A., Gow, N. A., Kahmann, R., Lebrun, M. H., Lenasi, H., Perez-Martin, J., Talbot, N. J., Wendland, J., & Di Pietro, A. (2009). Comparative genomics of MAP kinase and calcium-calcineurin signaling components in plant and human pathogenic fungi. Fungal Genetics and Biology, 46(4), 287–298.CrossRefPubMedGoogle Scholar
  26. Sesma, A., & Osbourn, A. E. (2004). The rice leaf blast pathogen undergoes developmental processes typical of root-infecting fungi. Nature, 431, 582–586.CrossRefPubMedGoogle Scholar
  27. Sharma, M., & Kulshrestha, S. (2015). Colletotrichum gloeosporioides: An anthracnose causing pathogen of fruits and vegetables. Biosciences, Biotechnology Research Asia, 12(2), 1233–1246.CrossRefGoogle Scholar
  28. Tatebayashi, K., Takekawa, M., & Saito, H. (2003). A docking site determining specificity of Pbs2 MAPKK for Ssk2/Ssk22 MAPKKKs in the yeast HOG pathway. The EMBO Journal, 22(14), 3624–3634.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Thompson, C. J., Movva, N. R., Tizard, R., Crameri, R., Davies, J. E., Lauwereys, M., & Botterman, J. (1987). Characterization of the herbicide-resistance gene bar from Streptomyces hygroscopicus. The EMBO Journal, 6, 2519–2523.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Xue, T., Nguyen, C. K., Romans, A., & May, G. S. (2004). A mitogen-activated protein kinase that senses nitrogen regulates conidial germination and growth in Aspergillus fumigatus. Eukaryotic Cell, 3(2), 557–560.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Yong, H. Y., Bakar, F. D., Illias, R. M., Mahadi, N. M., & Murad, A. M. (2013). Cgl-SLT2 is required for appressorium formation, sporulation and pathogenicity in Colletotrichum gloeosporioides. Brazilian Journal of Microbiology, 44(4), 1241–1250.CrossRefPubMedGoogle Scholar
  32. Zhao, X., Xue, C., Kim, Y., & Xu, J. R. (2004). A ligation-PCR approach for generating gene replacement constructs in Magnaporthe grisea. Fungal Genetics Newsletter, 51, 17–18.CrossRefGoogle Scholar
  33. Zhao, X., Mehrabi, R., & Xu, J. R. (2007). Mitogen-activated protein kinase pathways and fungal pathogenesis. Eukaryotic Cell, 6(10), 1701–1714.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2018

Authors and Affiliations

  1. 1.Institute of Tropical Agriculture and ForestryHainan UniversityHaikouChina
  2. 2.Environment and Plant Protection InstituteChinese Academy of Tropical Agriculture SciencesHaikouChina

Personalised recommendations