European Journal of Plant Pathology

, Volume 152, Issue 4, pp 921–931 | Cite as

Application of matrix-assisted laser desorption ionization time-of-flight mass spectrometry for rapid and accurate identification of Ralstonia solanacearum and Ralstonia pseudosolanacearum

  • J. L. J. van de Bilt
  • M. H. L. Wolsink
  • P. P. M. A. Gorkink-Smits
  • N. M. Landman
  • M. Bergsma-Vlami


Ralstonia solanacearum “species complex” (RSSC) represents soil-borne plant pathogenic bacteria, consisting of diverse and widespread strains that cause bacterial wilt on a wide range of host plants. A recent polyphasic taxonomic study has divided the RSSC into three bacterial species; Ralstonia pseudosolanacearum (phylotypes I and III), Ralstonia solanacearum (phylotype II) and Ralstonia syzygii (phylotype IV). Currently, standard identification of RSSC in plant health laboratories mainly relies on performance of two tests that are based on a different principle. However, these tests are inadequate to precisely discriminate among the three bacterial species in the RSSC. The accurate identification of each of the three bacterial species in the RSSC requires additional molecular tests, including a phylotype determination. These methodologies are labor-intensive, time consuming and rather impractical for routine identification purposes in a plant health laboratory. We explored the potential for an accurate identification of R. pseudosolanacearum (phylotypes I and III) and R. solanacearum (phylotype II) in RSSC, upon implementation of the MALDI-TOF MS tool, and after the creation and validation of an in-house database supplementing the commercial database and covering the entire known genetic diversity in RSSC. MALDI-TOF MS is an emerging approach for identification of bacterial plant pathogens and has been shown to be robust and reproducible. Additionally, when compared to the conventional microbial identification methods it is shown to be less laborious and less expensive. Validation data demonstrated that our in-house database (Mass Spectra Profiles, MSPs) was very specific resulting in the rapid and accurate identification of Ralstonia solanacearum (phylotype II), and Ralstonia pseudosolanacearum (phylotypes I and III). Additionally, no false positive results were obtained with our in-house database for other related Ralstonia sp., such as the R. picketii isolate PD 3286, or for the Pseudomonas syringae and Pseudomonas spp. isolates.


MALDI-TOF MS Spectral database Mass Spectral Profiles RSSC Phylotypes 



This work was partly financially supported by research grant OS 2016339 project for R. solanacearum species complex of the Ministry of Economic Affairs in the Netherlands.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. Angeleti, S. (2017). Matrix assisted laser desorption time of flight mass spectrometry (MALDI-TOF MS) in clinical microbiology. Journal of Microbiological Methods, 138, 20–29.CrossRefGoogle Scholar
  2. Anonymous (2006). COMMISSION DIRECTIVE 2006/63/CE of 14 July 2006 amending Annexes II to VII to Council Directive 98/57/EC on the control of Ralstonia solanacearum (Smith) Yabuuchi et al. Official Journal European Communities No. L 206, 36–106.Google Scholar
  3. Bizzini, A., Jaton, K., Romo, D., Bille, J., Prodhom, G., & Greub, G. (2011). Matrix-assisted laser desorption ionization-time of flight mass spectrometry as an alternative to16SrRNA genes quencing for identification of difficult-to-identify bacterial strains. Journal of Clinical Microbiology.
  4. Castillo, J. A., & Greenberg, J. T. (2007). Evolutionary dynamics of Ralstonia solanacearum. Applied and Environmental Microbiology, 73(4), 1225–1238.CrossRefGoogle Scholar
  5. Elphinstone, J. G. (2005). The current bacterial wilt situation: A global overview. In C. Allen, P. Prior, & A. C. Hayward (Eds.), Bacterial wilt disease and the Ralstonia solanacearum Species Complex (pp. 9–28). Madison: APS Press.Google Scholar
  6. Fegan, M., & Prior, P. (2005). How complex is the "Ralstonia solanacearum species complex"? In C. Allen, P. Prior, & A. C. Hayward (Eds.), Bacterial wilt disease and the Ralstonia solanacearum species complex (pp. 449–461). Madison, WI: APS Press.Google Scholar
  7. Fenselau, C., & Demirev, P. A. (2001). Characterization of intact microorganisms by MALDI mass spectrometry. Mass Spectrometry Reviews.
  8. Ge, M., Li, B., Wang, L., Tao, Z., Mao, S., Wang, Y., Xie, G., & Sun, G. (2014). Differentiation in MALDI-TOF MS and FTIR spectra between two pathovars of Xanthomonas oryzae. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 133, 730–734.CrossRefGoogle Scholar
  9. Holland, R. D., Duffy, C. R., Rafii, F., Sutherland, J. B., Heinze, T. M., Holder, C. L., Voorhees, K. J., & Lay Jr., J. O. (1999). Identification of bacterial proteins observed in MALDI TOF mass spectra from whole cells. Analytical Chemistry, 71, 3226–3230.CrossRefGoogle Scholar
  10. Krishnamurthy, T., Ross, P. L., & Rajamani, U. (1996). Detection of pathogenic and non-pathogenic bacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Mass Spectrometry, 10, 883–888.Google Scholar
  11. Lartigue, M.-F. (2013). Matrix-assisted laser desorption ionization time-of-flight mass spectrometry for bacterial strain characterization. Infection, Genetics and Evolution, 13, 230–235.CrossRefGoogle Scholar
  12. Paini, D. R., Sheppard, A. W., Cook, D. C., De Barro, P. J., Worner, S. P., & Thomas, M. B. (2016). Global threat to agriculture from invasive species. PNAS, 113(27), 7575–7579.CrossRefGoogle Scholar
  13. Pastrik, K. H., Elphinstone, J. G., & Pukall, R. (2002). Sequence analysis and detection of Ralstonia solanacearum by multiplex PCR amplification of 16S-23S ribosomal intergenic spacer region with internal positive control. European Journal of Plant Pathology, 108, 831–842.CrossRefGoogle Scholar
  14. Prior, P., Ailloud, F., Dalsing, B. L., Remenant, B., Sanchez, B., & Allen, C. (2016). Genomic and proteomic evidence support the division of the plant pathogen Ralstonia solanacearum into three species. BMC Genomics, 17, 90–100.CrossRefGoogle Scholar
  15. Rahi, P., Prakash, O., & Shouche, Y. S. (2016). Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass-Spectrometry (MALDI-TOF MS) Based Microbial Identifications: Challenges and Scopes for Microbial Ecologists. Frontiers in Microbiology, 7, 1359.CrossRefGoogle Scholar
  16. Rezzonico, F., Vogel, G., Duffy, B., & Tonolla, M. (2010). Application of whole-cell matrix-assisted laser desorption ionization-time of flight mass spectrometry for rapid identification and clustering analysis of Pantoea species. Applied and Environmental Microbiology, 76, 4497–4509.CrossRefGoogle Scholar
  17. Safni, I., Cleenwerck, I., De Vos, P., Fegan, M., Sly, L., & Kappler, U. (2014). Polyphasic taxonomic revision of the Ralstonia solanacearum species complex: proposal to amend the descriptions of Ralstonia solanacearum and Ralstonia syzygii and reclassify current R. syzygii strains as Ralstonia syzygii subsp. syzygii subsp. nov., R. solanacearum phylotype IV strains as Ralstonia syzygii subsp. indonesiensis subsp. nov., banana blood disease bacterium strains as Ralstonia syzygii subsp. celebesensis subsp. nov. and R. solanacearum phylotype I and III strains as Ralstonia pseudosolanacearum sp. nov. International Journal of Systematic and Evolutionary Microbiology, 64, 3087–3103.CrossRefGoogle Scholar
  18. Sauer, S., Freiwald, A., Maier, T., Kube, M., Reinhardt, R., Kostrzewa, M., & Geide, K. (2008). Classification and identification of bacteria by mass spectrometry and computational analysis. PLoS ONE, 3, e2843.CrossRefGoogle Scholar
  19. Schönfeld, J., Heuer, H., Van Elsas, J. D., & Smalla, K. (2003). Specific and sensitive detection of Ralstonia solanacearum in soil on the basis of PCR amplification of fliC fragments. Applied and Environmental Microbiology, 69, 7248–7256.CrossRefGoogle Scholar
  20. Seal, S. E., Jackson, L. A., Young, J. P. W., & Daniels, M. J. (1993). Differentiation of Ralstonia solanacearum, Ralstonia syzyggii, Ralstonia pickettii and the blood disease bacterium by partial 16S rRNA sequencing: construction of oligonucleotide primers for sensitive detection by polymerase chain reaction. Journal of General Microbiology, 139, 1587–1594.CrossRefGoogle Scholar
  21. Seng, P., Abat, C., Rolain, J. M., Colson, P., Lagier, J. C., & Gouriet, F. (2013). Identification of rare pathogenic bacteria in a clinical microbiology laboratory: impact of matrix-assisted laser desorption ionization-time of flight mass spectrometry. Journal of Clinical Microbiology, 51, 2182–2194.CrossRefGoogle Scholar
  22. Van der Wolf, J. M., Nijhuis, E. H., Kowalewska, M. J., Saddler, G. S., Parkinson, N., Elphinstone, J. G., Pritchard, L., Toth, I. K., Lojkowska, E., Potrykus, M., Waleron, M., de Vos, P., Cleenwerck, I., Pirhonen, M., Garlant, L., Hélias, V., Pothier, J. F., Pflüger, V., Duffy, B., Tsror, L., & Manulis, S. (2014). Dickeya solani sp. nov., a pectinolytic plant pathogenic bacterium isolated from potato (Solanum tuberosum). International Journal of Systematic and Evolutionary Microbiology, 64, 768–774.CrossRefGoogle Scholar
  23. Vandroemme, J., Cottyn, B., Pothier, J. F., Pflüger, V., Duffy, B., & Maes, M. (2013). Xanthomonas arboricola pv. fragariae: what’s in a name? Plant Pathology, 62, 1123–1131.CrossRefGoogle Scholar
  24. Vreeburg, R. A. M., Bergsma-Vlami, M., Bollema, R. M., de Haan, E. G., Kooman-Gersmann, M., Smits-Mastebroek, L., Tameling, W. I. L., Tjou-Tam-Sin, N. N. A., van de Vossenberg, B. T. L. H., & Janse, J. D. (2016). Performance of real-time PCR and immunofluorescence for the detection of Clavibacter michiganensis subsp. sepedonicus and Ralstonia solanacearum in potato tubers in routine testing. EPPO Bulletin, 46, 112–121.CrossRefGoogle Scholar
  25. Weller, S. A., Elphinstone, J. G., Smith, N. C., Boonham, N., & Stead, D. E. (2000). Detection of Ralstonia solanacearum strains with a quantitative, multiplex, real-time, fluorogenic PCR (TaqMan) assay. Applied and Environmental Microbiology, 66, 2853–2858.CrossRefGoogle Scholar
  26. Wensing, A., Gernold, M., & Geider, K. (2011). Detection of Erwinia species from the apple and pear flora by mass spectroscopy of whole cells and with novel PCR primers. Journal of Applied Microbiology, 112, 147–158.CrossRefGoogle Scholar
  27. Wicker, E., Grassart, L., Coranson-Beaudu, R., Mian, D., Guilbaud, C., Fegan, M., & Prior, P. (2007). Ralstonia solanacearum strains from Martinique (French West Indies) exhibiting a new pathogenic potential. Applied and Environmental Microbiology, 73, 6790–6801.CrossRefGoogle Scholar
  28. Zaluga, J., Heylen, K., Van Hoorde, K., Hoste, B., Van Vaerenbergh, J., Maes, M., & De Vos, P. (2011). GyrB sequence analysis and MALDI-TOF MS as identification tools for plant pathogenic Clavibacter. Systematic and Applied Microbiology, 34(6), 400–407.CrossRefGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2018

Authors and Affiliations

  • J. L. J. van de Bilt
    • 1
  • M. H. L. Wolsink
    • 1
  • P. P. M. A. Gorkink-Smits
    • 1
  • N. M. Landman
    • 1
  • M. Bergsma-Vlami
    • 1
  1. 1.National Reference Centre (NRC)Dutch National Plant Protection Organization (NPPO-NL)Wageningenthe Netherlands

Personalised recommendations