Advertisement

European Journal of Plant Pathology

, Volume 152, Issue 3, pp 701–710 | Cite as

Effect of geraniol, a plant-based alcohol monoterpene oil, against Meloidogyne javanica

  • Eleni Nasiou
  • Ioannis O. Giannakou
Article
  • 110 Downloads

Abstract

Terpenes are secondary metabolites produced in different biological pathways as defense mechanisms against, among others, nematodes, insects and herbivores. Root-knot nematodes (RKN; Meloidogyne spp.) are one of the most serious pests of economically importance for vegetable production in Greece. The aim of this study was to investigate the nematicidal activity of geraniol on different life stages at 35–1000 ppm doses against the root-knot nematode Meloidogyne javanica. To our knowledge, this study is the first to report the effect of geraniol on egg differentiation and also its sub-lethal doses effect. Experiments testing the contact action of geraniol resulted in about 100% mortality of J2 s, whereas vapor showed only about 10%. Particularly, geraniol paralyzed 100% of second-stage juveniles (J2 s) and inhibited egg hatching in about 70%, at a dose of 500 ppm. In pot experiment, the use of geraniol at sub-lethal doses reduced female numbers in tomato roots. To the contrary, no nematostatic effects were observed in paralysis bioassays. The present study strongly demonstrates geraniol’s toxic effect against root-knot nematode Meloidogyne javanica.

Keywords

Monoterpenoids Meloidogyne spp. Egg mass Sublethal doses activity Egg-differentiation 

Notes

Acknowledgements

Authors are thankful to Tzortzakakis Emmanuel for the nematode specie speciment.

Author contributions

Nasiou Eleni is a PhD student, designed and conducted the exrperiments, analyzed data and wrote the manuscript. Ioannis Giannakou is Ms. Nasiou’s supervisor, supervised the experiments and corrected the first draft of the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

There are no ethical issues related to this manuscript.

References

  1. Al-Banna, L., Darwish, R. M., & Aburjai, T. (2003). Effect of plant extracts and essential oils on root-knot nematode. Phytopatologia Meditarranea, 42(2), 123–128.Google Scholar
  2. Ali, A., Murphy, C. C., Demirci, B., Wedge, D. E., Sampson, B. J., Khan, I. A., Baser, K. H. C., & Tabanca, N. (2013). Insecticidal and biting deterrent activity of rose-scented geranium (Pelargonium spp.) essential oils and individual compounds against Stephanitis pyrioides and Aedes aegypti. Pest Management Science, 69(12), 1385–1392.CrossRefGoogle Scholar
  3. Aytac, Z., Yildiz, Z. I., Kayaci-Senirmak, F., Keskin, N. O. S., Tekinay, T., & Uyar, T. (2016). Electrospinning of polymer-free cyclodextrin/geraniol-inclusion complex nanofibers: Enhanced shelf-life of geraniol with antibacterial and antioxidant properties. RSC Advances, 6(52), 46089–46099.CrossRefGoogle Scholar
  4. Back, M. A., Haydock, P. P. J., & Jenkinson, P. (2002). Disease complexes involving plant parasitic nematodes and soilborne pathogens. Plant Pathology, 51(6), 683–697.CrossRefGoogle Scholar
  5. Bleve-Zacheo, T., Mellilo, M. T., & Castagnone-Sereno, P. (2007). The contribution of biotechnology to root-knot nematode control in tomato plants. Pest Technology, 1(1), 1–16.Google Scholar
  6. Brown, D. J. F., & Boag, B. (1988). An examination of methods used to extract virus-vector nematodes (Nematoda: Longidoridae and Trichodoridae) from soil samples. Nematologia Mediterranea, 16(1), 93–99.Google Scholar
  7. Byrd, D.W., Krickpatrick, T, Barker, K.R. (1983). An improved technique for cleaning and staining plant tissue for detection of nematodes. Journal of Nematology, 15(1), 142–143.Google Scholar
  8. Chitwood, D. J. (2003). Research on plant-parasitic nematode biology conducted by the United States Department of Agriculture-Agricultural Research Service. Pest Management Science, 59(6–7), 748–753.CrossRefGoogle Scholar
  9. D'Addabbo, T., Laquale, S., Lovelli, S., Candido, V., & Avato, P. (2014). Biocide plants as a sustainable tool for the control of pests and pathogens in vegetable cropping systems. Italian Journal of Agronomy, 9(4), 137–145.CrossRefGoogle Scholar
  10. Echeverrigaray, S., Zacaria, J., & Beltrão, R. (2010). Nematicidal activity of monoterpenoids against the root-knot nematode meloidogyne incognita. Phytopathology, 100(2), 199–203.CrossRefGoogle Scholar
  11. Faria, J. M. S., Sena, I., Ribeiro, B., Rodrigues, A. M., Maleita, C. M. N., Abrantes, I., Bennett, R. N., Mota, M., & Figueiredo, A. C. (2016). First report on Meloidogyne chitwoodi hatching inhibition activity of essential oils and essential oils fractions. Journal of Pest Science, 89(1), 207–217.CrossRefGoogle Scholar
  12. Flegg, J. J. M. (1967). Extraction of Xiphinema and Longidorus species from soil by a modification of Cobb’s decanting and sieving technique. Annals of Applied Biology, 60(3), 429–437.CrossRefGoogle Scholar
  13. Giannakou, I. O. (2011). Efficacy of a formulated product containing Quillaja Saponaria plant extracts for the control of root-knot nematodes. European Journal of Plant Pathology, 130(4), 587–596.CrossRefGoogle Scholar
  14. Huang, G., Allen, R., Davis, E. L., Baum, T. J., & Hussey, R. S. (2006). Engineering broad root-knot resistance in transgenic plants by RNAi silencing of a conserved and essential rootknot nematode parasitism gene. Proceedings of the National Academy of Sciences of the United States of America, 103(39), 14302–14306.CrossRefGoogle Scholar
  15. Hussey, R. S., & Barker, K. R. (1973). A comparison of methods of collecting inocula of Meloidogyne spp., including a new technique. Plant DiseaJse Reports, 57, 1025–1028.Google Scholar
  16. Ibrahim, S. K., Traboulsi, A. F., & El-Haj, S. (2006). Effect of essential oils and plant extracts on hatching, migration and mortality of Meloidogyne incognita. Phytopathologia Mediterranea, 45(3), 238–246.Google Scholar
  17. Kabera, J. N., Semana, E., Mussa, A. R., & He, X. (2014). Plant secondary metabolites: Biosynthesis, classification, Function and Pharmacological Properties. Journal of Pharmacy and Pharmacology, 2, 377–392.Google Scholar
  18. Karpouzas, D. G., Hatziapostolou, P., Papadopoulou-Mourkidou, E., Giannakou, I. O., & Georgiadou, A. (2004). The enhanced biodegradation of fenamiphos in soils from previously treated sites and the effect of soil fumigants. Environmental Toxicology and Chemistry, 23(9), 2099–2107.CrossRefGoogle Scholar
  19. La Rocca, V., da Fonsêca, D. V., Silva-Alves, K. S., Ferreira-da-Silva, F. W., de Sousa, D. P., Santos, P. L., Quintans-Júnior, L. J., Leal-Cardoso, J. H., & de Almeida, R. N. (2017). Geraniol Induces Antinociceptive Effect in Mice Evaluated in Behavioural and Electrophysiological Models. Basic & Clinical Pharmacology & Toxicology, 120(1), 22–29.CrossRefGoogle Scholar
  20. Lee, B.-H., Lee, S.-E., Annis, P. C., Pratt, S. J., Park, B.-S., & Tumaalii, F. (2002). Fumigant Toxicity of Essential Oils and Monoterpenes Against the Red Flour Beetle, Tribolium castaneum Herbst. Journal of Asia-Pacific Entomology, 5(2), 237–240.CrossRefGoogle Scholar
  21. López-Meneses, A. K., Sánchez-Mariñez, R. I., Quintana-Obregón, E. A., Parra-Vergara, N. V., González-Aguilar, G. A., López-Saiz, C. M., & Cortez-Rocha, M. O. (2017). In vitro Antifungal Activity of Essential oils and Major Components against Fungi Plant Pathogens. Journal of Phytopathology, 165(4), 232–237.CrossRefGoogle Scholar
  22. Martin, F. N. (2003). Development of alternative strategies for management of soilborne pathogens currently controlled with methyl bromide. Annual Review of Phytopathology, 41, 325–350.CrossRefGoogle Scholar
  23. Melo, C. H. D., de Freitas, M. A., Figueiredo, L. G. C. N., Sabino, A. R., de Alencar, F. J. V. & Cosmo, A. J. (2015). In vitro antimicrobial activity of geraniol and cariophyllene against Staphylococcus aureus. Revista Cubana de Plantas Medicinales, 20(1), 98–105.Google Scholar
  24. Moens, M., Perry, N. P., & Starr, L. J. (2009). Root-knot nematodes. Wallingford: CAB International.Google Scholar
  25. Nasiou, E., & Giannakou, I. O. (2017). The potential use of carvacrol for the control of Meloidogyne javanica. European Journal of Plant Pathology, 149(2), 415–424.CrossRefGoogle Scholar
  26. Ntalli, N. G., & Caboni, P. (2012). Botanical nematicides in the mediterranean basin. Phytochemistry Reviews, 11(4), 351–359.CrossRefGoogle Scholar
  27. Ntalli, N.G. & Menkissoglu-Spiroudi, U. (2011). Pesticides of botanical origin: A promising tool in plant protection. In M. Stoytcheva (Ed.), Pesticides-formulations, effects, fate. Ch. 1, (pp. 3-24). InTech..Google Scholar
  28. Ntalli, N. G., Ferrari, F., Giannakou, I., & Menkissoglu-Spiroudi, U. (2010). Phytochemistry and nematicidal activity of the essential oils from 8 greek lamiaceae aromatic plants and 13 terpene components. Journal of Agricultural and Food Chemistry, 58(13), 7856–7863.CrossRefGoogle Scholar
  29. Ntalli, N. G., Ferrari, F., Giannakou, I., & Menkissoglu-Spiroudi, U. (2011). Synergistic and antagonistic interactions of terpenes against Meloidogyne incognita and the nematicidal activity of essential oils from seven plants indigenous to Greece. Pest Management Science, 67(3), 341–351.CrossRefGoogle Scholar
  30. Oka, Y., Nacar, S., Putievsky, E., Ravid, U., Yaniv, Z., & Spiegel, Y. (2000). Nematicidal activity of essential oils and their components against the root-knot nematode. Phytopathology, 90(7), 710–715.CrossRefGoogle Scholar
  31. Orion, D., Kritzman, G., Meyer, S. L., Erbe, E. F., & Chitwood, D. J. (2001). A role of the gelatinous matrix in the resistance of root-knot nematode (Meloidogyne spp.) eggs to microorganisms. Journal of Nematology, 33(4), 203–207.Google Scholar
  32. Papadopoulou, E. S., Lagos, S., Spentza, F., Vidiadakis, E., Karas, P. A., Klitsinaris, T., & Karpouzas, D. G. (2016). The dissipation of fipronil, chlorpyrifos, fosthiazate and ethoprophos in soils from potato monoculture areas: First evidence for the enhanced biodegradation of fosthiazate. Pest Management Science, 72(5), 1040–1050.CrossRefGoogle Scholar
  33. Tzortzakakis, E. A., & Trudgill, D. L. (2005). A comparative study of the thermal time requirements for embryogenesis in Meloidogyne javanica and M. incognita. Nematology, 7(2), 313–315.CrossRefGoogle Scholar
  34. Walker, J. T., & Melin, J. B. (1996). Mentha piperita, Mentha spicata and effects of their essential oils on Meloidogyne in soils. Journal of Nematology, 28(4S), 629–635.Google Scholar
  35. Yu, D., Wang, J., Shao, X., Xu, F., & Wang, H. (2015). Antifungal modes of action of tea tree oil and its two characteristic components against Botrytis cinerea. Journal of Applied Microbiology, 119(5), 1253–1262.CrossRefGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2018

Authors and Affiliations

  1. 1.Laboratory of Agricultural Zoology and Entomology, Department of Science of Crop ProductionAgricultural University of AthensAthensGreece

Personalised recommendations