Advertisement

European Journal of Plant Pathology

, Volume 152, Issue 4, pp 957–976 | Cite as

Transcriptome profiling helps to identify potential and true molecular switches of stealth to brute force behavior in Pectobacterium atrosepticum during systemic colonization of tobacco plants

  • Vladimir Gorshkov
  • Rim Gubaev
  • Olga Petrova
  • Amina Daminova
  • Natalia Gogoleva
  • Marina Ageeva
  • Olga Parfirova
  • Maxim Prokchorchik
  • Yevgeny Nikolaichik
  • Yuri Gogolev
SI: Plant Pathology for Innovative Agroecology
  • 180 Downloads

Abstract

In the present study, we have monitored the process of systemic plant colonization by the plant pathogenic bacterium Pectobacterium atrosepticum (Pba) using RNA-Seq analysis in order to compare bacterial traits under in planta and in vitro conditions and to reveal potential players that participate in switching from stealth to brute force strategy of the pathogen. Two stages of tobacco plant colonization have been assayed: i) the initial one associated with visually symptomless spread of bacteria throughout the host body via primary xylem vessels where bacterial emboli were formed (stealth strategy), and ii) the advanced stage coupled with an extensive colonization of core parenchyma and manifestation of soft rot symptoms (brute force strategy). Plant-inducible genes in Pba and potential players switching the pathogen’s behavior were revealed. Genes from the cfa locus responsible for the production of coronafacic acid displayed the strongest induction in the asymptomatic zone relative to the symptomatic one and were shown experimentally to act as the true strategy “switchers” of Pba behavior in planta. Surprisingly, cfa genes appeared to be unnecessary for establishment of the asymptomatic stage of plant colonization but were required for the transition to soft-rot-associated symptomatic stage coupled with over-induction of jasmonate-mediated pathway in the plant.

Keywords

Plant-microbe interactions Pectobacterium Soft rots Virulence factors Transcriptome profiling Coronafacic acid Bacterial emboli 

Notes

Acknowledgments

We would like to express our gratitude to Dr. Fabienne Guillon (INRA, France) for the INRA-RU2 antibody. This study was partially supported by the Russian Science Foundation (project No. 15-14-10022).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Human participants and animals studies

Research did not involve Human Participants and/or Animals.

Informed consent

The informed consent was not necessary.

Supplementary material

10658_2018_1496_MOESM1_ESM.doc (59 kb)
ESM 1 (DOC 59 kb)
10658_2018_1496_MOESM2_ESM.xls (1.5 mb)
ESM 2 (XLS 1534 kb)
10658_2018_1496_Fig10_ESM.gif (35 kb)
Fig. S1.

Transcript levels of P. atrosepticum operon located genes (according to DOOR2 database), which show different expression in asymptomatic zone 1 compared to in vitro. Zone 1 is designated in fig. 1. (GIF 34 kb)

10658_2018_1496_MOESM3_ESM.tif (90 kb)
High resolution image (TIF 90 kb)
10658_2018_1496_Fig11_ESM.gif (40 kb)
Fig. S2.

Transcript levels of P. atrosepticum operon located genes (according to DOOR2 database), which show different expression in symptomatic zone 2 compared to in vitro. Zone 2 is designated in fig. 1. (GIF 39 kb)

10658_2018_1496_MOESM4_ESM.tif (80 kb)
High resolution image (TIF 79 kb)

References

  1. Ageichik, A. V., Evtushenkov, A. N., & Nikolaichik, Y. A. (2002). The role of type III secretion system in Erwinia carotovora subsp. atroseptica virulence. Plant Protection Science, 38, 523–527.Google Scholar
  2. Andersson, R. A., Kõiv, V., Norman-Setterblad, C., & Pirhonen, M. (1999). Role of RpoS in virulence and stress tolerance of the plant pathogen Erwinia carotovora subsp. carotovora. Microbiology, 145(12), 3547–3556.CrossRefGoogle Scholar
  3. Bell, K. S., Sebaihia, M., Pritchard, L., Holden, M. T. G., Hyman, L. J., Holeva, M. C., Thomson, N. R., Bentley, S. D., Churcher, L. J. C., Mungall, K., Atkin, R., Bason, N., Brooks, K., Chillingworth, T., Clark, K., Doggett, J., Fraser, A., Hance, Z., Hauser, H., Jagels, K., Moule, S., Norbertczak, H., Ormond, D., Price, C., Quail, M. A., Sanders, M., Walker, D., Whitehead, S., Salmond, G. P. C., Birch, P. R. J., Parkhill, J., & Toth, I. K. (2004). Genome sequence of the enterobacterial phytopathogen Erwinia carotovora subsp. atroseptica and characterization of virulence factors. Proceedings of the National Academy of Sciences of the United States of America, 101(30), 11105–11110.CrossRefGoogle Scholar
  4. Bender, C. L. (1999). Chlorosis-inducing phytotoxins produced by Pseudomonas syringae. European Journal of Plant Pathology, 105(1), 1–12.CrossRefGoogle Scholar
  5. Blodgett, J. A., Zhang, J. K., & Metcalf, W. W. (2005). Molecular cloning, sequence analysis, and heterologous expression of the phosphinothricin tripeptide biosynthetic gene cluster from Streptomyces viridochromogenes DSM 40736. Antimicrobial Agents and Chemotherapy, 49(1), 230–240.CrossRefGoogle Scholar
  6. Boccara, M., Mills, C. E., Zeier, J., Anzi, C., Lamb, C., Poole, R. K., & Delledonne, M. (2005). Flavohaemoglobin HmpX from Erwinia chrysanthemi confers nitrosative stress tolerance and affects the plant hypersensitive reaction by intercepting nitric oxide produced by the host. The Plant Journal, 43(2), 226–237.CrossRefGoogle Scholar
  7. Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 30(15), 2114–2120.CrossRefGoogle Scholar
  8. Bray, N., Pimentel, H., Melsted, P., & Pachter, L. (2016). Near-optimal RNA-Seq quantification. Nature Biotechnology, 34(5), 525–527.CrossRefGoogle Scholar
  9. Burbank, L., Mohammadi, M., & Roper, M. C. (2015). Siderophore-mediated iron acquisition influences motility and is required for full virulence of the xylem-dwelling bacterial phytopathogen Pantoea stewartii subsp. stewartii. Applied and Environmental Microbiology, 81(1), 139–148.CrossRefGoogle Scholar
  10. Burrows, L. L. (2012). Pseudomonas aeruginosa twitching motility: type IV pili in action. Annual Review of Microbiology, 66, 493–520.CrossRefGoogle Scholar
  11. Cabiscol Català, E., Tamarit Sumalla, J., & Ros Salvador, J. (2000). Oxidative stress in bacteria and protein damage by reactive oxygen species. International Microbiology, 3(1), 3–8.Google Scholar
  12. Chaban, B., Hughes, H. V., & Beeby, M. (2015). The flagellum in bacterial pathogens: For motility and a whole lot more. Seminars in Cell & Developmental Biology, 46, 91–103.CrossRefGoogle Scholar
  13. Charkowski, A., Blanco, C., Condemine, G., Expert, D., Franza, T., Hayes, C., Hugouvieux-Cotte-Pattat, N., Solanilla, E. L., Low, D., Moleleki, L., Pirhonen, M., Pitman, A., Perna, N., Reverchon, S., Rodríguez Palenzuela, P., San Francisco, M., Toth, I., Tsuyumu, S., van der Waals, J., van der Wolf, J., van Gijsegem, F., Yang, C. H., & Yedidia, I. (2012). The role of secretion systems and small molecules in soft-rot Enterobacteriaceae pathogenicity. Annual Review of Phytopathology, 50, 425–449.CrossRefGoogle Scholar
  14. Cianciotto, N. P., & White, R. C. (2017). Expanding role of type II secretion in bacterial pathogenesis and beyond. Infection and Immunity, 85(5), e00014–e00017.CrossRefGoogle Scholar
  15. Corbett, M., Virtue, S., Bell, K., Birch, P., Burr, T., Hyman, L., Lilley, K., Poock, S., Toth, I., & Salmond, G. (2005). Identification of a new quorum-sensing-controlled virulence factor in Erwinia carotovora subsp. atroseptica secreted via the type II targeting pathway. Molecular Plant-Microbe Interactions, 18(4), 334–342.CrossRefGoogle Scholar
  16. Coulthurst, S. J., Lilley, K. S., Hedley, P. E., Liu, H., Toth, I. K., & Salmond, G. P. C. (2008). DsbA plays a critical and multifaceted role in the production of secreted virulence factors by the phytopathogen Erwinia carotovora subsp. atroseptica. Journal of Biological Chemistry, 283, 23739–23753.CrossRefGoogle Scholar
  17. Czajkowski, R., de Boer, W. J., van Veen, J. A., & van der Wolf, J. M. (2010). Downward vascular translocation of a green fluorescent protein-tagged strain of Dickeya sp. (Biovar 3) from stem and leaf inoculation sites on potato. Phytopathology, 100(11), 1128–1137.CrossRefGoogle Scholar
  18. Davidsson, P. R., Kariola, T., Niemi, O., & Palva, E. T. (2013). Pathogenicity of and plant immunity to soft rot pectobacteria. Frontiers in Plant Science, 4, 191.CrossRefGoogle Scholar
  19. Dellagi, A., Rigault, M., Segond, D., Roux, C., Kraepiel, Y., Cellier, F., Briat, J. F., Gaymard, F., & Expert, D. (2005). Siderophore-mediated upregulation of Arabidopsis ferritin expression in response to Erwinia chrysanthemi infection. The Plant Journal, 43(2), 262–272.CrossRefGoogle Scholar
  20. Dellagi, A., Segond, D., Rigault, M., Fagard, M., Simon, C., Saindrenan, P., & Expert, D. (2009). Microbial siderophores exert a subtle role in Arabidopsis during infection by manipulating the immune response and the iron status. Plant Physiology, 150(4), 1687–1696.CrossRefGoogle Scholar
  21. Franza, T., Mahé, B., & Expert, D. (2005). Erwinia chrysanthemi requires a second iron transport route dependent of the siderophore achromobactin for extracellular growth and plant infection. Molecular Microbiology, 55(1), 261–275.CrossRefGoogle Scholar
  22. Gorshkov, V. Y., Petrova, O. E., Gogoleva, N. E., & Gogolev, Y. V. (2010). Cell-to-cell communication in the populations of enterobacterium Erwinia carotovora ssp. atroseptica SCRI1043 during adaptation to stress conditions. FEMS Immunology and Medical Microbiology, 59(3), 378–385.CrossRefGoogle Scholar
  23. Gorshkov, V., Daminova, A., Ageeva, M., Petrova, O., Gogoleva, N., Tarasova, N., & Gogolev, Y. (2014). Dissociation of a population of Pectobacterium atrosepticum SCRI1043 in tobacco plants: formation of bacterial emboli and dormant cells. Protoplasma, 251(3), 499–510.CrossRefGoogle Scholar
  24. Gorshkov, V., Daminova, A., Mikshina, P., Petrova, O., Ageeva, M., Salnikov, V., et al. (2016). Pathogen-induced conditioning of the primary xylem vessels – A prerequisite for the formation of bacterial emboli by Pectobacterium atrosepticum. Plant Biology, 18(4), 609–617.CrossRefGoogle Scholar
  25. Gorshkov, V., Islamov, B., Mikshina, P., Petrova, O., Burygin, G., Sigida, E., Shashkov, A., Daminova, A., Ageeva, M., Idiyatullin, B., Salnikov, V., Zuev, Y., Gorshkova, T., & Gogolev, Y. (2017a). Pectobacterium atrosepticum exopolysaccharides: identification, molecular structure, formation under stress and in planta conditions. Glycobiology, 27(11), 1016–1026.CrossRefGoogle Scholar
  26. Gorshkov, V., Kwenda, S., Petrova, O., Osipova, E., Gogolev, Y., & Moleleki, L. (2017b). Global gene expression analysis of cross-protection phenotype of Pectobacterium atrosepticum. PLoS One, 12(1), e0169536.CrossRefGoogle Scholar
  27. Guérin, J., Bigot, S., Schneider, R., Buchanan, S. K., & Jacob-Dubuisson, F. (2017). Two-partner secretion: combining efficiency and simplicity in the secretion of large proteins for bacteria-host and bacteria-bacteria interactions. Frontiers in Cellular and Infection Microbiology, 7, 148.CrossRefGoogle Scholar
  28. Helias, V., Andrivon, D., & Jouan, B. (2000). Internal colonization pathways of potato plants by Erwinia carotovora ssp. atroseptica. Plant Pathology, 49(1), 33–42.CrossRefGoogle Scholar
  29. Holeva, M. C., Bell, K. S., Hyman, L. J., Avrova, A. O., Whisson, S. C., Birch, P. R., et al. (2004). Use of a pooled transposon mutation grid to demonstrate roles in disease development for Erwinia carotovora subsp. atroseptica putative type III secreted effector (DspE/a) and helper (HrpN) proteins. Molecular Plant-Microbe Interactions, 17(9), 943–950.CrossRefGoogle Scholar
  30. Horsman, G. P., & Zechel, D. L. (2016). Phosphonate biochemistry. Chemical Reviews, 117(8), 5704–5783.CrossRefGoogle Scholar
  31. Hugouvieux-Cotte-Pattat, N., Condemine, G., & Shevchik, V. E. (2014). Bacterial pectate lyases, structural and functional diversity. Environmental Microbiology Reports, 6(5), 427–440.CrossRefGoogle Scholar
  32. Koirala, S., Mears, P., Sim, M., Golding, I., Chemla, Y. R., Aldridge, P. D., & Rao, C. V. (2014). A nutrient-tunable bistable switch controls motility in Salmonella enterica serovar Typhimurium. MBio, 5(5), e01611–14.CrossRefGoogle Scholar
  33. Kopylova, E., Noé, L., & Touzet, H. (2012). SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics, 28(24), 3211–3217.CrossRefGoogle Scholar
  34. Kubheka, G. C., Coutinho, T. A., Moleleki, N., & Moleleki, L. N. (2013). Colonization patterns of an mCherry-tagged Pectobacterium carotovorum subsp. brasiliense strain in potato plants. Phytopathology, 103(12), 1268–1279.CrossRefGoogle Scholar
  35. Lapwood, D. H., & Harris, R. I. (1982). The spread of Erwinia carotovora subsp. atroseptica and subsp. carotovora from stem lesions and degenerating seed tubers to progeny tubers in soil. Potato Research, 25(1), 41–50.CrossRefGoogle Scholar
  36. Liu, H., Coulthurst, S. J., Pritchard, L., Hedley, P. E., Ravensdale, M., Humphris, S., Burr, T., Takle, G., Brurberg, M. B., Birch, P. R. J., Salmond, G. P. C., & Toth, I. K. (2008). Quorum sensing coordinates brute force and stealth modes of infection in the plant pathogen Pectobacterium atrosepticum. PLoS Pathogens, 4(6), e1000093.CrossRefGoogle Scholar
  37. Mansfield, J., Genin, S., Magori, S., Citovsky, V., Sriariyanum, M., Ronald, P., et al. (2012). Top 10 plant pathogenic bacteria in molecular Plant Pathology. Molecular Plant Pathology, 13(6), 614–629.CrossRefGoogle Scholar
  38. Mattick, J. S. (2002). Type IV pili and twitching motility. Annual Reviews in Microbiology, 56(1), 289–314.CrossRefGoogle Scholar
  39. Mattinen, L., Tshuikina, M., Mäe, A., & Pirhonen, M. (2004). Identification and characterization of nip, necrosis-inducing virulence protein of Erwinia carotovora subsp. carotovora. Molecular Plant-Microbe Interactions, 17(12), 1366–1375.CrossRefGoogle Scholar
  40. Mattinen, L., Nissinen, R., Riipi, T., Kalkkinen, N., & Pirhonen, M. (2007). Host-extract induced changes in the secretome of the plant pathogenic bacterium Pectobacterium atrosepticum. Proteomics, 7(19), 3527–3537.CrossRefGoogle Scholar
  41. Mattinen, L., Somervuo, P., Nykyri, J., Nissinen, R., Kouvonen, P., Corthals, G., Auvinen, P., Aittamaa, M., Valkonen, J. P. T., & Pirhonen, M. (2008). Microarray profiling of host-extract-induced genes and characterization of the type VI secretion cluster in the potato pathogen Pectobacterium atrosepticum. Microbiology, 154(8), 2387–2396.CrossRefGoogle Scholar
  42. Meng, Y., Li, Y., Galvani, C. D., Hao, G., Turner, J. N., Burr, T. J., & Hoch, H. C. (2005). Upstream migration of Xylella fastidiosa via pilus-driven twitching motility. Journal of Bacteriology, 187(16), 5560–5567.CrossRefGoogle Scholar
  43. Metcalf, W. W., Jiang, W., & Wanner, B. L. (1994). Use of the rep technique for allele replacement to construct new Escherichia coli hosts for maintenance of R6Kλ origin plasmids at different copy numbers. Gene, 138(1), 1–7.CrossRefGoogle Scholar
  44. Moleleki, L. N., Pretorius, R. G., Tanui, C. K., Mosina, G., & Theron, J. (2017). A quorum sensing-defective mutant of Pectobacterium carotovorum ssp. brasiliense 1692 is attenuated in virulence and unable to occlude xylem tissue of susceptible potato plant stems. Molecular Plant Pathology, 18(1), 32–44.CrossRefGoogle Scholar
  45. Nachin, L., Nannmark, U., & Nyström, T. (2005). Differential roles of the universal stress proteins of Escherichia coli in oxidative stress resistance, adhesion, and motility. Journal of Bacteriology, 187(18), 6265–6272.CrossRefGoogle Scholar
  46. Nykyri, J., Mattinen, L., Niemi, O., Adhikari, S., Kõiv, V., Somervuo, P., Fang, X., Auvinen, P., Mäe, A., Palva, E. T., & Pirhonen, M. (2013). Role and regulation of the Flp/tad pilus in the virulence of Pectobacterium atrosepticum SCRI1043 and Pectobacterium wasabiae SCC3193. PLoS One, 8(9), e73718.CrossRefGoogle Scholar
  47. Osbourn, A. E., & Field, B. (2009). Operons. Cellular and Molecular Life Sciences, 66(23), 3755–3775.CrossRefGoogle Scholar
  48. Pemberton, C. L., Whitehead, N. A., Sebaihia, M., Bell, K. S., Hyman, L. J., Harris, S. J., Matlin, A. J., Robson, N. D., Birch, P. R. J., Carr, J. P., Toth, I. K., & Salmond, G. P. C. (2005). Novel quorum-sensing-controlled genes in Erwinia carotovora subsp. carotovora: identification of a fungal elicitor homologue in a soft-rotting bacterium. Molecular Plant-Microbe Interactions, 18(4), 343–353.CrossRefGoogle Scholar
  49. Penfold, R. J., & Pemberton, J. M. (1992). An improved suicide vector for construction of chromosomal insertion mutations in bacteria. Gene, 118(1), 145–146.CrossRefGoogle Scholar
  50. Pérez-Mendoza, D., Coulthurst, S. J., Humphris, S., Campbell, E., Welch, M., Toth, I. K., & Salmond, G. P. C. (2011). A multi-repeat adhesin of the phytopathogen, Pectobacterium atrosepticum, is secreted by a type I pathway and is subject to complex regulation involving a non-canonical diguanylate cyclase. Molecular Microbiology, 82(3), 719–733.CrossRefGoogle Scholar
  51. Perombelon, M. C. M. (2002). Potato diseases caused by soft rot erwinias: an overview of pathogenesis. Plant Pathology, 51(1), 1–12.CrossRefGoogle Scholar
  52. Petrova, O., Gorshkov, V., Daminova, A., Ageeva, M., Moleleki, L., & Gogolev, Y. (2014). Stress response in Pectobacterium atrosepticum SCRI1043 under starvation conditions: adaptive reactions at a low population density. Research in Microbiology, 165(2), 119–127.CrossRefGoogle Scholar
  53. Petrova, O., Gorshkov, V., Sergeeva, J., Daminova, A., Ageeva, M., & Gogolev, Y. (2016). Alternative scenarios of starvation-induced adaptation in Pectobacterium atrosepticum. Research in Microbiology, 167(4), 254–261.CrossRefGoogle Scholar
  54. Ralet, M. C., Tranquet, O., Poulain, D., Moïse, A., & Guillon, F. (2010). Monoclonal antibodies to rhamnogalacturonan I backbone. Planta, 231(6), 1373–1383.CrossRefGoogle Scholar
  55. Ren, Q., Huang, J., Mao, H., Tian, B., & Liu, S. (2010). Brassica napus LOX2 gene expression induced by methyl jasmonate (MeJA), benzothiadiazole (BTH), and Sclerotinia sclerotiorum. Journal of Henan Agricultural Sciences, 7, 22–25.Google Scholar
  56. Robinson, M. D., McCarthy, D. J., & Smyth, G. K. (2010). edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 26(1), 139–140.CrossRefGoogle Scholar
  57. Rojas, C. M., Ham, J. H., Deng, W. L., Doyle, J. J., & Collmer, A. (2002). HecA, a member of a class of adhesins produced by diverse pathogenic bacteria, contributes to the attachment, aggregation, epidermal cell killing, and virulence phenotypes of Erwinia chrysanthemi EC16 on Nicotiana clevelandii seedlings. Proceedings of the National Academy of Sciences, 99(20), 13142–13147.CrossRefGoogle Scholar
  58. Schwartz, D., Grammel, N., Heinzelmann, E., Keller, U., & Wohlleben, W. (2005). Phosphinothricin tripeptide synthetases in Streptomyces viridochromogenes Tü494. Antimicrobial Agents and Chemotherapy, 49(11), 4598–4607.CrossRefGoogle Scholar
  59. Song, J. K., Kim, H. S., Ahn, H. J., Song, B. K., & Rhee, J. S. (2006). Heterologous ABC exporter-based cloning of gram-negative bacterial type I secretion pathway-dependent metalloproteases from an Erwinia genomic DNA library in Escherichia coli. Enzyme and Microbial Technology, 39(6), 1190–1196.CrossRefGoogle Scholar
  60. Soutourina, O. A., & Bertin, P. N. (2003). Regulation cascade of flagellar expression in gram-negative bacteria. FEMS Microbiology Reviews, 27(4), 505–523.CrossRefGoogle Scholar
  61. Stewart, M. K., & Cookson, B. T. (2012). Non-genetic diversity shapes infectious capacity and host resistance. Trends in Microbiology, 20(10), 461–466.CrossRefGoogle Scholar
  62. Tarasova, N., Gorshkov, V., Petrova, O., & Gogolev, Y. (2013). Potato signal molecules that activate pectate lyase synthesis in Pectobacterium atrosepticum SCRI1043. World Journal of Microbiology and Biotechnology, 29(7), 1189–1196.CrossRefGoogle Scholar
  63. Thomas, S., Holland, I. B., & Schmitt, L. (2014). The type 1 secretion pathway—The hemolysin system and beyond. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1843(8), 1629–1641.CrossRefGoogle Scholar
  64. Toth, I. K., & Birch, P. R. (2005). Rotting softly and stealthily. Current Opinion in Plant Biology, 8(4), 424–429.CrossRefGoogle Scholar
  65. Toth, I. K., Pritchard, L., & Birch, P. R. (2006). Comparative genomics reveals what makes an enterobacterial plant pathogen. Annual Reiew of Phytopathology, 44, 305–336.CrossRefGoogle Scholar
  66. Uppalapati, S. R., Ishiga, Y., Wangdi, T., Kunkel, B. N., Anand, A., Mysore, K. S., & Bender, C. L. (2007). The phytotoxin coronatine contributes to pathogen fitness and is required for suppression of salicylic acid accumulation in tomato inoculated with Pseudomonas syringae pv. tomato DC3000. Molecular Plant-Microbe Interactions, 20(8), 955–965.CrossRefGoogle Scholar
  67. Wairuri, C. K., Van der Waals, J. E., Van Schalkwyk, A., & Theron, J. (2012). Ralstonia solanacearum needs Flp pili for virulence on potato. Molecular Plant-Microbe Interactions, 25(4), 546–556.CrossRefGoogle Scholar
  68. Yu, X., Goforth, C., Meyer, C., Rachel, R., Wirth, R., Schröder, G. F., et al. (2012). Filaments from Ignicoccus hospitalis show diversity of packing in proteins containing N-terminal type IV pilin helices. Journal of Molecular Biology, 422(2), 274–281.CrossRefGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2018

Authors and Affiliations

  • Vladimir Gorshkov
    • 1
    • 2
  • Rim Gubaev
    • 1
  • Olga Petrova
    • 1
  • Amina Daminova
    • 1
    • 2
  • Natalia Gogoleva
    • 1
    • 2
  • Marina Ageeva
    • 1
  • Olga Parfirova
    • 1
    • 2
  • Maxim Prokchorchik
    • 3
  • Yevgeny Nikolaichik
    • 3
  • Yuri Gogolev
    • 1
    • 2
  1. 1.Kazan Institute of Biochemistry and BiophysicsFederal Research Center “Kazan Scientific Center of RAS”KazanRussia
  2. 2.Kazan Federal UniversityKazanRussia
  3. 3.Department of Molecular Biology, Faculty of BiologyBelarusian State UniversityMinskBelarus

Personalised recommendations