European Journal of Plant Pathology

, Volume 152, Issue 4, pp 1011–1025 | Cite as

Potential of combined biological control agents to cope with Phytophthora parasitica, a major pathogen of Choisya ternata

  • Youssef Manasfi
  • Marc-Antoine Cannesan
  • Wassila Riah
  • Mélanie Bressan
  • Karine Laval
  • Azeddine Driouich
  • Maïté Vicré
  • Isabelle Trinsoutrot-GattinEmail author


Phytophthora parasitica infection of Choisya ternata can cause important economical loses due to root rot disease. This research focused on testing the potential benefit of chemical treatment (Mefenoxam) and Biological Control Agents (Glomus intraradices, Gliocladium catenulatum, Trichoderma atroviridae and Bacillus amyloliquefaciens) in protecting C. ternata against P. parasitica. BCAs were applied as individual and/or combined treatments. The effect of the treatment was observed by monitoring C. ternata symptoms. A real-time PCR targeting the ypt1 gene was also adapted to evaluate P. parasitica development in the substrate. The use of Mefenoxam provided the higher level of plant protection. However, a significant reduction in plant symptoms and P. parasitica development was also observed with the combined treatment of G. intraradices with G. catenulatum and G. intraradices with T. atroviridae. Another combined treatment with G. catenulatum and B. amyloliquefaciens increased the pathogen density and severity. No individual treatment had a significant effect on the pathogen. Our results highlight the potential of biological control in protecting C. ternata against P. parasitica and the advantage of combined strategies.


Biocontrol agents Choisya ternata Chemical treatment Phytophthora parasitica Root rot disease Soil-borne pathogens 



We thank SFR Normandie Végétal, Astredhor Seine Manche and their experimental station at Saint Germain En Laye for the technical monitoring, Agnès Attard from Institut Sophia Agrobiotech for providing the P. parasitica INRA-310 strain, the region of Normandy for the doctoral grant and all the people who actively contributed to this work.

Compliance with ethical standards

Authors declare that:

• This manuscript has not been submitted to more than one journal for simultaneous consideration.

• This manuscript has not been published previously (partly or in full).

• This paper relate a single study and has not been split up into several parts.

• No data, including images, have been fabricated or manipulated to support our conclusions.

• No data or text by others are presented as if they were the author’s own.

• Consent to submit has been received explicitly from all co-authors, as well as from the responsible authorities - tacitly or explicitly - at the institute/organization where the work has been carried out, before the work is submitted.

• Authors whose names appear on the submission have contributed sufficiently to the scientific work and therefore share collective responsibility and accountability for the results.

• Authors group, corresponding author, and order of authors have been validate by both authors and responsible authorities before submission of this manuscript.

• Upon request, we are prepared to send relevant documentation or data in order to verify the validity of the results.

Supplementary material

10658_2018_1495_MOESM1_ESM.docx (13 kb)
ESM 1 (DOCX 13 kb)
10658_2018_1495_MOESM2_ESM.docx (23 kb)
ESM 2 (DOCX 22 kb)


  1. Aragaki, M., & Uchida, J. Y. (2001). Morphological distinctions between Phytophthora capsici and P. tropicalis sp. nov. Mycologia, 93(1), 137–145.CrossRefGoogle Scholar
  2. Attard, A., Evangelisti, E., Kebdani-Minet, N., Panabières, F., Deleury, E., Maggio, C., Ponchet, M., & Gourgues, M. (2014). Transcriptome dynamics of Arabidopsis thaliana root penetration by the oomycete pathogen Phytophthora parasitica. BMC Genomics, 15, 538.CrossRefGoogle Scholar
  3. Bellemain, E., Carlsen, T., Brochmann, C., Coissac, E., Taberlet, P., & Kauserud, H. a. (2010). ITS as an environmental DNA barcode for fungi: an in silico approach reveals potential PCR biases. BMC Microbiology, 10(1), 189.CrossRefGoogle Scholar
  4. Benfradj, N., Metoui, N., & Boughalleb-M’Hamdi, N. (2016). Screening for tolerance of different citrus rootstocks against zoospores of Phytophthora nicotianae in infested soil. Journal of Phytopathology and Pest Management, 3(3), 63–75.Google Scholar
  5. Benitez, T., Rincón, A. M., Limón, M. C., & Codón, A. C. (2004). Biocontrol mechanisms of Trichoderma strains. International Microbiology: The Official Journal of the Spanish Society for Microbiology, 7(4), 249–260.Google Scholar
  6. Boava, L. P., Cristofani-Yaly, M., Mafra, V. S., Kubo, K., Kishi, L. T., Takita, M. A., Ribeiro-Alves, M., & Machado, M. A. (2011). Global gene expression of Poncirus trifoliata, Citrus sunki and their hybrids under infection of Phytophthora parasitica. BMC Genomics, 12(1), 39.CrossRefGoogle Scholar
  7. Bodker, L., Kjøller, R., & Rosendahl, S. (1998). Effect of phosphate and the arbuscular mycorrhizal fungus Glomus intraradices on disease severity of root rot of peas (Pisum sativum) caused by Aphanomyces euteiches. Mycorrhiza, 8(3), 169–174.CrossRefGoogle Scholar
  8. Bora, T., Özaktan, H., Göre, E., & Aslan, E. (2004). Biological control of Fusarium oxysporum f. sp. melonis by wettable powder formulations of the two strains of Pseudomonas putida. Journal of Phytopathology, 152(8–9), 471–475.CrossRefGoogle Scholar
  9. Boyd, D. R., Sharma, N. D., Loke, P. L., Malone, J. F., McRoberts, W. C., & Hamilton, J. T. G. (2007). Synthesis, structure and stereochemistry of quinoline alkaloids from Choisya ternata. Organic & Biomolecular Chemistry, 5, 2983.CrossRefGoogle Scholar
  10. Bridge, P., & Spooner, B. (2001). Soil fungi: diversity and detection. Plant and Soil, 232(1–2), 147–154.CrossRefGoogle Scholar
  11. Brunner, K., Zeilinger, S., Ciliento, R., Woo, S. L., Lorito, M., Kubicek, C. P., & Mach, R. L. (2005). Improvement of the fungal biocontrol agent Trichoderma atroviride to enhance both antagonism and induction of plant systemic disease resistance. Applied and Environmental Microbiology, 71(7), 3959–3965.CrossRefGoogle Scholar
  12. Cacciola, S. O., Spica, D., Cooke, D. E. L., Raudino, F., & di San Lio, G. M. (2006). Wilt and collapse of Cuphea ignea caused by Phytophthora tropicalis in Italy. Plant Disease, 90(5), 680–680.CrossRefGoogle Scholar
  13. Cameron, D. D., Neal, A. L., van Wees, S. C. M., & Ton, J. (2013). Mycorrhiza-induced resistance: more than the sum of its parts? Trends in Plant Science, 18(10), 539–545.CrossRefGoogle Scholar
  14. Chemeltorit, P. P., Mutaqin, K. H., & Widodo, W. (2017). Combining Trichoderma hamatum THSW13 and Pseudomonas aeruginosa BJ10-86: a synergistic chili pepper seed treatment for Phytophthora capsici infested soil. European Journal of Plant Pathology, 147(1), 157–166.CrossRefGoogle Scholar
  15. Chen, Y., & Roxby, R. (1996). Characterization of a Phytophthora infestans gene involved in vesicle transport. Gene, 181(1–2), 89–94.CrossRefGoogle Scholar
  16. Conrath, U., Beckers, G. J. M., Flors, V., García-Agustín, P., Jakab, G., Mauch, F., et al. (2006). Priming: getting ready for battle. Molecular Plant-Microbe Interactions, 19(10), 1062–1071.CrossRefGoogle Scholar
  17. Cullen, D. W., & Hirsch, P. R. (1998). Simple and rapid method for direct extraction of microbial DNA from soil for PCR. Soil Biology and Biochemistry, 30(8), 983–993.CrossRefGoogle Scholar
  18. Davidse, L. C., Looijen, D., Turkensteen, L. J., & Wal, D. v. d. (1981). Occurrence of metalaxyl-resistant strains of Phytophthora infestans in Dutch potato fields. Netherlands Journal of Plant Pathology, 87(2), 65–68.CrossRefGoogle Scholar
  19. Drenth, A., & Guest, D.I. (2004). Diversity and management of Phytophthora in Southeast Asia. Canberra, Australia: Australian Centre for International Agricultural Research (ACIAR).Google Scholar
  20. Drenth, A., Wagels, G., Smith, B., Sendall, B., O’Dwyer, C., Irvine, G., & Irwin, J. A. G. (2006). Development of a DNA-based method for detection and identification of Phytophthora species. Australasian Plant Pathology, 35(2), 147–159.CrossRefGoogle Scholar
  21. Farr, D. F., & Rossman, A. Y. (2017). Fungal Databases, U.S. National Fungus Collections, ARS, USDA. Accessed 3 July 2017.
  22. Filion, M., St-Arnaud, M., & Fortin, J. A. (1999). Direct interaction between the arbuscular mycorrhizal fungus Glomus intraradices and different rhizosphere microorganisms. New Phytologist, 141(3), 525–533.CrossRefGoogle Scholar
  23. Filion, M., St-Arnaud, M., & Jabaji-Hare, S. H. (2003). Quantification of Fusarium solani f. sp. phaseoli in mycorrhizal bean plants and surrounding Mycorrhizosphere soil using real-time polymerase chain reaction and direct isolations on selective media. Phytopathology, 93(2), 229–235.CrossRefGoogle Scholar
  24. Galiana, E., Rivière, M.-P., Pagnotta, S., Baudouin, E., Panabières, F., Gounon, P., & Boudier, L. (2005). Plant-induced cell death in the oomycete pathogen Phytophthora parasitica. Cellular Microbiology, 7(9), 1365–1378.CrossRefGoogle Scholar
  25. Galli, M., Haegi, A., Vitale, S., Belisario, A., & Luongo, L. (2013). First report of Phytophthora tropicalis on Rhododendron in Italy. Plant Disease, 97(10), 1385–1385.Google Scholar
  26. Gerlach, W. W. P., & Schubert, R. (2001). A new wilt of Cyclamen caused by Phytophthora tropicalis in Germany and the Netherlands. Plant Disease, 85(3), 334–334.CrossRefGoogle Scholar
  27. Grünwald, N. J., Werres, S., Goss, E. M., Taylor, C. R., & Fieland, V. J. (2012). Phytophthora obscura sp. nov., a new species of the novel Phytophthora subclade 8d. Plant Pathology, 61(3), 610–622.CrossRefGoogle Scholar
  28. Guetsky, R., Shtienberg, D., Elad, Y., & Dinoor, A. (2001). Combining biocontrol agents to reduce the variability of biological control. Phytopathology, 91(7), 621–627.CrossRefGoogle Scholar
  29. Gullino, M. L., & Kuijpers, L. A. M. (1994). Social and political implications of managing plant diseases with restricted fungicides in Europe. Annual Review of Phytopathology, 32(1), 559–581.CrossRefGoogle Scholar
  30. Haas, B. J., Kamoun, S., Zody, M. C., Jiang, R. H. Y., Handsaker, R. E., Cano, L. M., Grabherr, M., Kodira, C. D., Raffaele, S., Torto-Alalibo, T., Bozkurt, T. O., Ah-Fong, A. M. V., Alvarado, L., Anderson, V. L., Armstrong, M. R., Avrova, A., Baxter, L., Beynon, J., Boevink, P. C., Bollmann, S. R., Bos, J. I. B., Bulone, V., Cai, G., Cakir, C., Carrington, J. C., Chawner, M., Conti, L., Costanzo, S., Ewan, R., Fahlgren, N., Fischbach, M. A., Fugelstad, J., Gilroy, E. M., Gnerre, S., Green, P. J., Grenville-Briggs, L. J., Griffith, J., Grünwald, N. J., Horn, K., Horner, N. R., Hu, C. H., Huitema, E., Jeong, D. H., Jones, A. M. E., Jones, J. D. G., Jones, R. W., Karlsson, E. K., Kunjeti, S. G., Lamour, K., Liu, Z., Ma, L. J., MacLean, D., Chibucos, M. C., McDonald, H., McWalters, J., Meijer, H. J. G., Morgan, W., Morris, P. F., Munro, C. A., O’Neill, K., Ospina-Giraldo, M., Pinzón, A., Pritchard, L., Ramsahoye, B., Ren, Q., Restrepo, S., Roy, S., Sadanandom, A., Savidor, A., Schornack, S., Schwartz, D. C., Schumann, U. D., Schwessinger, B., Seyer, L., Sharpe, T., Silvar, C., Song, J., Studholme, D. J., Sykes, S., Thines, M., van de Vondervoort, P. J. I., Phuntumart, V., Wawra, S., Weide, R., Win, J., Young, C., Zhou, S., Fry, W., Meyers, B. C., van West, P., Ristaino, J., Govers, F., Birch, P. R. J., Whisson, S. C., Judelson, H. S., & Nusbaum, C. (2009). Genome sequence and analysis of the Irish potato famine pathogen Phytophthora infestans. Nature, 461(7262), 393–398.CrossRefGoogle Scholar
  31. Hansen, E. M. (2008). Alien forest pathogens: Phytophthora species are changing world forests. Boreal Environment Research, 13, 33–41.Google Scholar
  32. Hao, W., Richardson, P. A., & Hong, C. X. (2010). Foliar blight of annual Vinca (Catharanthus roseus) caused by Phytophthora tropicalis in Virginia. Plant Disease, 94(2), 274–274.CrossRefGoogle Scholar
  33. Harman, G. E., Petzoldt, R., Comis, A., & Chen, J. (2004a). Interactions between Trichoderma harzianum strain T22 and maize inbred line Mo17 and effects of these interactions on diseases caused by Pythium ultimum and Colletotrichum graminicola. Phytopathology, 94(2), 147–153.CrossRefGoogle Scholar
  34. Harman, G. E., Howell, C. R., Viterbo, A., Chet, I., & Lorito, M. (2004b). Trichoderma species--opportunistic, avirulent plant symbionts. Nature Reviews. Microbiology, 2(1), 43–56.CrossRefGoogle Scholar
  35. Hayden, K. J., Rizzo, D., Tse, J., & Garbelotto, M. (2004). Detection and quantification of Phytophthora ramorum from California forests using a real-time polymerase chain reaction assay. Phytopathology, 94(10), 1075–1083.CrossRefGoogle Scholar
  36. Holmes, K. A., & Benson, D. M. (1994). Evaluation of Phytophthora parasitica var. nicotianae for biocontrol of Phytophthora parasitica on Catharanthus roseus. Plant Disease, 78, 193–199.CrossRefGoogle Scholar
  37. Hong, C. X., Richardson, P. A., Kong, P., Jeffers, S. N., & Oak, S. W. (2006). Phytophthora tropicalis isolated from diseased leaves of Pieris japonica and Rhododendron catawbiense and found in irrigation water and soil in Virginia. Plant Disease, 90(4), 525–525.CrossRefGoogle Scholar
  38. Ippolito, A., Schena, L., Nigro, F., Ligorio, V. S., & Yaseen, T. (2004). Real-time detection of Phytophthora nicotianae and P. citrophthorain citrus roots and soil. European Journal of Plant Pathology, 110(8), 833–843.CrossRefGoogle Scholar
  39. Karagiannidis, N., Bletsos, F., & Stavropoulos, N. (2002). Effect of Verticillium wilt (Verticillium dahliae Kleb.) and mycorrhiza (Glomus mosseae) on root colonization, growth and nutrient uptake in tomato and eggplant seedlings. Scientia Horticulturae, 94(1), 145–156.CrossRefGoogle Scholar
  40. Keinath, A. P. (2007). Sensitivity of populations of Phytophthora capsici from South Carolina to Mefenoxam, Dimethomorph, Zoxamide, and Cymoxanil. Plant Disease, 91(6), 743–748.CrossRefGoogle Scholar
  41. Ko, W. H. (1978). Heterothallic Phytophthora: evidence for hormonal regulation of sexual reproduction. Microbiology, 107(1), 15–18.Google Scholar
  42. Kong, P., Hong, C. x., Tooley, P. w., Ivors, K., Garbelotto, M., & Richardson, P. a. (2004). Rapid identification of Phytophthora ramorum using PCR-SSCP analysis of ribosomal DNA ITS-1. Letters in Applied Microbiology, 38(5), 433–439.CrossRefGoogle Scholar
  43. Kroon, L. P. N. M., Brouwer, H., de Cock, A. W. A. M., & Govers, F. (2012). The genus Phytophthora anno 2012. Phytopathology, 102(4), 348–364.CrossRefGoogle Scholar
  44. Larousse, M., & Galiana, E. (2017). Microbial partnerships of pathogenic oomycetes. PLoS Pathogens, 13(1), e1006028. Scholar
  45. Larsen, J., Ravnskov, S., & Jakobsen, I. (2003). Combined effect of an arbuscular mycorrhizal fungus and a biocontrol bacterium against Pythium ultimum in soil. Folia Geobotanica, 38(2), 145–154.CrossRefGoogle Scholar
  46. Lee, B. D., Dutta, S., Ryu, H., Yoo, S.-J., Suh, D.-S., & Park, K. (2015). Induction of systemic resistance in Panax ginseng against Phytophthora cactorum by native Bacillus amyloliquefaciens HK34. Journal of Ginseng Research, 39(3), 213–220.CrossRefGoogle Scholar
  47. Li, S.-B., Fang, M., Zhou, R.-C., & Huang, J. (2012). Characterization and evaluation of the endophyte Bacillus B014 as a potential biocontrol agent for the control of Xanthomonas axonopodis pv. dieffenbachiae – Induced blight of Anthurium. Biological Control, 63(1), 9–16.CrossRefGoogle Scholar
  48. Lioussanne, L., Jolicoeur, M., & St-Arnaud, M. (2008). Mycorrhizal colonization with Glomus intraradices and development stage of transformed tomato roots significantly modify the chemotactic response of zoospores of the pathogen Phytophthora nicotianae. Soil Biology and Biochemistry, 40(9), 2217–2224.CrossRefGoogle Scholar
  49. Liu, Y., Shi, J., Feng, Y., Yang, X., Li, X., & Shen, Q. (2013). Tobacco bacterial wilt can be biologically controlled by the application of antagonistic strains in combination with organic fertilizer. Biology and Fertility of Soils, 49(4), 447–464.CrossRefGoogle Scholar
  50. Loyd, A. L., Benson, D. M., & Ivors, K. L. (2014). Phytophthora populations in nursery irrigation water in relationship to pathogenicity and infection frequency of Rhododendron and Pieris. Plant Disease, 98(9), 1213–1220.CrossRefGoogle Scholar
  51. Matheson, C. D., Gurney, C., Esau, N., & Lehto, R. (2010). Assessing PCR inhibition from humic substances. The Open Enzyme Inhibition Journal, 3(1), 38–45.CrossRefGoogle Scholar
  52. Matsubara, Y., Tamura, H., & Harada, T. (1995). Growth enhancement and Verticillium wilt control by vesicular-arbuscular mycorrhizal fungus inoculation in eggplant. Journal of the Japanese Society for Horticultural Science, 64(3), 555–561.CrossRefGoogle Scholar
  53. Mcquilken, M. P., Gemmell, J., & Lahdenperä, M. L. (2001). Gliocladium catenulatum as a potential biological control agent of damping-off in bedding plants. Journal of Phytopathology, 149(3–4), 171–178.CrossRefGoogle Scholar
  54. Meng, Y., Zhang, Q., Ding, W., & Shan, W. (2014). Phytophthora parasitica: a model oomycete plant pathogen. Mycology, 5(2), 43–51.CrossRefGoogle Scholar
  55. Naher, L., Yusuf, U. K., Ismail, A., & Hossain, K. (2014). Trichoderma spp.: a biocontrol agent for sustainable management of plant diseases. Pakistan Journal of Botany, 46(4), 1489–1493.Google Scholar
  56. Parra, G., & Ristaino, J. B. (2001). Resistance to mefenoxam and metalaxyl among field isolates of Phytophthora capsici causing Phytophthora blight of bell pepper. Plant Disease, 85(10), 1069–1075.CrossRefGoogle Scholar
  57. Pozo, M. J., Verhage, A., García-Andrade, J., García, J. M., & Azcón-Aguilar, C. (2009). Priming plant defence against pathogens by arbuscular mycorrhizal Fungi. In C. Azcón-Aguilar, J. M. Barea, S. Gianinazzi, & V. Gianinazzi-Pearson (Eds.), Mycorrhizas - functional processes and ecological impact (pp. 123–135). Berlin Heidelberg: Springer.CrossRefGoogle Scholar
  58. Rasmussen, R. (2001). Quantification on the LightCycler. In S. Meuer, C. Wittwer, & K.-I. Nakagawara (Eds.), Rapid cycle real-time PCR, methods and applications (pp. 21–34). Berlin Heidelberg: Springer.Google Scholar
  59. Roberts, D. P., Lohrke, S. M., Meyer, S. L. F., Buyer, J. S., Bowers, J. H., Jacyn Baker, C., Li, W., de Souza, J. T., Lewis, J. A., & Chung, S. (2005). Biocontrol agents applied individually and in combination for suppression of soilborne diseases of cucumber. Crop Protection, 24(2), 141–155.CrossRefGoogle Scholar
  60. Schena, L., & Cooke, D. E. L. (2006). Assessing the potential of regions of the nuclear and mitochondrial genome to develop a “molecular tool box” for the detection and characterization of Phytophthora species. Journal of Microbiological Methods, 67(1), 70–85.CrossRefGoogle Scholar
  61. Schena, L., Hughes, K. J. D., & Cooke, D. E. L. (2006). Detection and quantification of Phytophthora ramorum, P. kernoviae, P. citricola and P. quercina in symptomatic leaves by multiplex real-time PCR. Molecular Plant Pathology, 7(5), 365–379.CrossRefGoogle Scholar
  62. Schisler, D. A., Slininger, P. J., & Bothast, R. J. (1997). Effects of antagonist cell concentration and two-strain mixtures on biological control of fusarium dry rot of potatoes. Phytopathology, 87(2), 177–183.CrossRefGoogle Scholar
  63. Shen, S.-S., Piao, F.-Z., Lee, B. W., & Park, C. S. (2007). Characterization of antibiotic substance produced by Serratia plymuthica A21-4 and the biological control activity against pepper Phytophthora blight. The Plant Pathology Journal, 23, 180–186.CrossRefGoogle Scholar
  64. Smith, V. L., Wilcox, W. F., & Harman, G. E. (1990). Potential for biological control of Phytophthora root and crown rots of apple by Trichoderma and Gliocladium spp. Phytopathology, 80, 880–885.CrossRefGoogle Scholar
  65. Souto, G. i., Correa, O. s., Montecchia, M. s., Kerber, N. l., Pucheu, N. l., Bachur, M., & García, A. f. (2004). Genetic and functional characterization of a Bacillus sp. strain excreting surfactin and antifungal metabolites partially identified as iturin-like compounds. Journal of Applied Microbiology, 97(6), 1247–1256.CrossRefGoogle Scholar
  66. Spadaro, D., & Gullino, M. L. (2005). Improving the efficacy of biocontrol agents against soilborne pathogens. Crop Protection, 24(7), 601–613.CrossRefGoogle Scholar
  67. Steyaert, J. M., Ridgway, H. J., Elad, Y., & Stewart, A. (2003). Genetic basis of mycoparasitism: A mechanism of biological control by species of Trichoderma. New Zealand Journal of Crop and Horticultural Science, 31(4), 281–291.CrossRefGoogle Scholar
  68. Talbot, D., & Wedgwood, E. (2009). Choisya: surveys of the occurrence of root rotting and potential causes. Horticultural Development Company Project HNS 196. Horticultural Development Company.Google Scholar
  69. Thilagavathi, R., Saravanakumar, D., Ragupathi, N., & Samiyappan, R. (2007). A combination of biocontrol agents improves the management of dry root rot (Macrophomina phaseolina) in greengram. Phytopathologia Mediterranea, 46(2), 157–167.Google Scholar
  70. Vernière, C., Cohen, S., Raffanel, B., Dubois, A., Venard, P., & Panabières, F. (2004). Variability in pathogenicity among Phytophthora spp. isolated from Citrus in Corsica. Journal of Phytopathology, 152(8–9), 476–483.CrossRefGoogle Scholar
  71. Vigo, C., Norman, J. R., & Hooker, J. E. (2000). Biocontrol of the pathogen Phytophthora parasitica by arbuscular mycorrhizal fungi is a consequence of effects on infection loci. Plant Pathology, 49(4), 509–514.CrossRefGoogle Scholar
  72. Vinale, F., Sivasithamparam, K., Ghisalberti, E. L., Marra, R., Woo, S. L., & Lorito, M. (2008). Trichoderma–plant–pathogen interactions. Soil Biology and Biochemistry, 40(1), 1–10.CrossRefGoogle Scholar
  73. Wehner, J., Antunes, P. M., Powell, J. R., Mazukatow, J., & Rillig, M. C. (2010). Plant pathogen protection by arbuscular mycorrhizas: A role for fungal diversity? Pedobiologia, 53(3), 197–201.CrossRefGoogle Scholar
  74. White, T. J., Bruns, T., Lee, S., & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for Phylogenetics. In M. A. Innis, D. H. Gelfand, J. J. Sninski, & T. J. White (Eds.), PCR protocols: A guide to methods and applications (pp. 315–322). San Diego: Academic Press.Google Scholar
  75. Xu, J. (2016). Fungal DNA barcoding. Genome, 59(11), 913–932.CrossRefGoogle Scholar
  76. Xu, X.-M., Jeffries, P., Pautasso, M., & Jeger, M. J. (2011). A numerical study of combined use of two biocontrol agents with different biocontrol mechanisms in controlling foliar pathogens. Phytopathology, 101(9), 1032–1044.CrossRefGoogle Scholar
  77. Zhang, Z. G., Zhang, J. Y., Zheng, X. B., Yang, Y. W., & Ko, W. H. (2004). Molecular distinctions between Phytophthora capsici and Ph. tropicalis based on ITS sequences of ribosomal DNA. Journal of Phytopathology, 152(6), 358–364.CrossRefGoogle Scholar
  78. Zhang, M., Li, J., Shen, A., Tan, S., Yan, Z., Yu, Y., Xue, Z., Tan, T., & Zeng, L. (2016). Isolation and identification of Bacillus amyloliquefaciens IBFCBF-1 with potential for biological control of Phytophthora blight and growth promotion of pepper. Journal of Phytopathology, 164(11–12), 1012–1021.CrossRefGoogle Scholar
  79. Zheng, H., Cui, C., Zhang, Y., Wang, D., Jing, Y., & Kim, K. Y. (2005). Active changes of lignification-related enzymes in pepper response to Glomus intraradices and/or Phytophthora capsici. Journal of Zhejiang University SCIENCE, 6B(8), 778–786.CrossRefGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2018

Authors and Affiliations

  • Youssef Manasfi
    • 1
    • 2
  • Marc-Antoine Cannesan
    • 3
  • Wassila Riah
    • 1
  • Mélanie Bressan
    • 1
  • Karine Laval
    • 1
  • Azeddine Driouich
    • 2
  • Maïté Vicré
    • 2
  • Isabelle Trinsoutrot-Gattin
    • 1
    Email author
  1. 1.AGHYLE Unit, UniLaSalleMont Saint AignanFrance
  2. 2.Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, EA4358, SFR FED 4277 “Normandie Végétal”Université de Rouen NormandieMont-Saint-Aignan cedexFrance
  3. 3.ASTREDHOR Seine-MancheMont Saint AignanFrance

Personalised recommendations