European Journal of Plant Pathology

, Volume 152, Issue 4, pp 933–944 | Cite as

Assessing the phenotypic and genotypic diversity of Sclerotinia sclerotiorum in France

  • Christel LeyronasEmail author
  • Marc Bardin
  • Karine Berthier
  • Magali Duffaud
  • Claire Troulet
  • Marie Torres
  • François Villeneuve
  • Philippe C. Nicot
SI: Plant Pathology for Innovative Agroecology


White mould caused by the ascomycete Sclerotinia sclerotiorum affects the production of many economically important crops. The incidence of this disease has recently increased in France, especially in melon crops, which were not affected much in the past. One possible explanation for this situation is the emergence of strains with particular characteristics, including increased aggressiveness to melon. To test this hypothesis, 200 isolates of S. sclerotiorum were collected from six host crops (bean, brassica oilseed rape, carrot, lettuce, melon, witloof chicory) in different regions. They were genotyped with 16 microsatellites markers. A subsample of 96 isolates were assessed for their aggressiveness on melon leaves. Overall, the isolates from melon did not show higher aggressiveness on melon leaves than those which originated from other host plants. Moreover, the melon isolates did not present distinctive genetic characteristics in comparison with those from other crops and shared several of the 128 identified multilocus haplotypes with isolates collected from carrot, witloof chicory and oilseed rape. Furthermore the Bayesian analysis of the genetic structure indicated that the host plant is not a structuring factor of the three genetic clusters identified, and it suggested instead the occurrence of an isolation-by-distance process. Possible consequences of these results for the management of white mould and alternative hypotheses to explain the recent changes in disease incidence are presented.


White mould Microsatellites Aggressiveness Vegetable Melon 



This study was supported in part by a CASDAR grant of the French Ministry of Agriculture (SCLEROLEG Project) and by the Groupement d’Intérêt Scientifique pour la Production Intégrée des Cultures légumières” (GIS PIClég). The authors thank all the field experimenters of the technical institutes (ACPEL, APEF, CEFEL, INVENIO, Terres Inovia, SILEBAN, UNILET) who collaborated in the project and who collected the isolates used in the present study.

Compliance with ethical standards

The research presented in this paper was supported in part by a CASDAR grant of the French Ministry of Agriculture (SCLEROLEG Project) and by the Groupement d’Intérêt Scientifique pour la Production Intégrée des Cultures légumières” (GIS PIClég).

The authors declare that this research was performed according to the ethical standards.

All the authors agreed to submit this manuscript in this current version.

Conflict of interest

The authors declare to have no conflict of interest.

Human and animal rights and informed consent

The research did not involve human participants and/or animals.

Supplementary material

10658_2018_1493_MOESM1_ESM.docx (244 kb)
ESM 1 Results of the multivariate analysis performed by considering for each isolate the cluster number as a factor and the year of sampling as well as the geographic coordinates as continuous variables. (DOCX 244 kb)
10658_2018_1493_MOESM2_ESM.pdf (30 kb)
ESM 2 Results of the test for isolation-by-distance (PDF 29 kb)


  1. Abawi, G. S., & Grogan, R. G. (1979). Epidemiology of diseases caused by Sclerotinia species. Phytopathology, 69, 899–904.CrossRefGoogle Scholar
  2. Aldrich-Wolfe, L., Travers, S., & Nelson Jr., B. D. (2015). Genetic variation of Sclerotinia sclerotiorum from multiple crops in the north central United States. PLoS One.
  3. Arnaud-Haond, S., & Belkhir, K. (2007). Genclone: a computer program to analyse genotypic data, test for clonality and describe spatial clonal organization. Molecular Ecololgy Notes, 7, 15–17.CrossRefGoogle Scholar
  4. Arnaud-Haond, S., Duarte, C. M., Alberto, F., & Serrao, E. A. (2007). Standardizing methods to address clonality in population studies. Molecular Ecology, 16, 5115–5139.CrossRefGoogle Scholar
  5. Atallah, Z. K., Larget, B., Chen, X., & Johnson, D. A. (2004). High genetic diversity, phenotypic uniformity, and evidence of outcrossing in Sclerotinia sclerotiorum in the Columbia Basin of Washington State. Phytopathology, 94, 737–742.CrossRefGoogle Scholar
  6. Attanayake, R. N., Carter, P. A., Jiang, D., del Río-Mendoza, L., & Chen, W. (2013). Sclerotinia sclerotiorum populations infecting canola from China and the United States are genetically and phenotypically distinct. Phytopathology, 103, 750–761.CrossRefGoogle Scholar
  7. Barari, H., Alavi, V., & Badalyan, S. M. (2010). Genetic and morphological diversities in Sclerotinia sclerotiorum isolates in northern parts of Iran. World Applied Sciences Journal, 8, 326–333.Google Scholar
  8. Barriere, V., Lecompte, F., Nicot, P. C., Maisonneuve, B., Tchamitchian, M., & Lescourret, F. (2014). Lettuce cropping with less pesticides. A review. Agronomy for Sustainable Development, 34, 175–198.CrossRefGoogle Scholar
  9. Belkhir, K., Borsa, P., Chikhi, L., Raufaste, N., & Bonhomme, F. (1996–2004). Genetix 4.05, logiciel sous Windows TM pour la génétique des populations. Laboratoire Génome, Populations, Interactions, CNRS UMR 5171, Université de Montpellier, Montpellier, France. [WWW document]. URL
  10. Boland, G. J., & Hall, R. (1994). Index of plant hosts of Sclerotinia sclerotiorum. Canadian Journal of Plant Pathology, 16, 93–108.CrossRefGoogle Scholar
  11. Brown, J. K. M., & Hovmøller, M. S. (2002). Aerial dispersal of pathogens on the global and continental scales and its impact on plant disease. Science, 297, 537–541.CrossRefGoogle Scholar
  12. Clarkson, J. P., Coventry, E., Kitchen, J., Carter, H. E., & Whipps, J. M. (2013). Population structure of Sclerotinia sclerotiorum in crop and wild hosts in the UK. Plant Pathology, 62, 309–324.CrossRefGoogle Scholar
  13. Clarkson, J. P., Fawcett, L., Anthony, S. G., & Young, C. (2014). A model for Sclerotinia sclerotiorum infection and disease development in lettuce, based on the effects of temperature, relative humidity and ascospore density. PLoS One.
  14. Clarkson, J. P., Warmington, R., Walley, P. G., Denton-Giles, M., Barbetti, M. J., Brodal, G., & Nordskog, B. (2017). Population structure of Sclerotinia subarctica and Sclerotinia sclerotiorum in England, Scotland and Norway. Frontiers in Microbiology.
  15. Derbyshire, M. C., & Denton-Giles, M. (2016). The control of sclerotinia stem rot on oilseed rape (Brassica napus): current practices and future opportunities. Plant Pathology, 65, 859–877.CrossRefGoogle Scholar
  16. Dunn, A. R., Kikkert, J. R., & Pethybridge, S. J. (2017). Genotypic characteristics in populations of Sclerotinia sclerotiorum from New York State, USA. Annals of Applied Biology.
  17. Ekins, M. G., Aitken, E. A. B., & Goulter, K. C. (2007). Aggressiveness among isolates of Sclerotinia sclerotiorum from sunflower. Australasian Plant Pathology, 36, 580–586.CrossRefGoogle Scholar
  18. Elad, Y., Pertot, I., Cotes Prado, A. M., & Stewart, A. (2016). Plant hosts of Botrytis spp. In S. Fillinger & Y. Elad (Eds.), Botrytis-the fungus, the pathogen and its management in agricultural systems (pp. 413–486). Dordrecht: Springer.CrossRefGoogle Scholar
  19. Elsheshtawi, M., Elkhaky, M. T., Sayed, S. R., Bahkali, A. H., Mohammed, A. A., Gambhir, D., Mansour, A. S., & Elgorban, A. M. (2017). Integrated control of white rot disease on beans caused by Sclerotinia sclerotiorum using Contans ® and reduced fungicides application. Saudi Journal of Biological Sciences, 24, 405–409.CrossRefGoogle Scholar
  20. Excoffier, L., Laval, G., & Schneider, S. (2005). Arlequin ver. 3.0: An integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online, 1, 47–50.Google Scholar
  21. Gomes, E. V., do Nascimento, L. B., de Freitas, M. A., Nasser, L. C. B., & Petrofeza, S. (2011). Microsatellite markers reveal genetic variation within Sclerotinia sclerotiorum populations in irrigated dry bean crops in Brazil. Journal of Phytopathology, 159, 94–99.CrossRefGoogle Scholar
  22. Goudet, J. (1995). FSTAT (Vers.1.2): a computer program to calculate F-statistics. Journal of Heredity, 86, 485–486.CrossRefGoogle Scholar
  23. Hemmati, R., Javan-Nikkhah, M., & Linde, C. C. (2009). Population genetic structure of Sclerotinia sclerotiorum on canola in Iran. European Journal of Plant Pathology, 125, 617–628.CrossRefGoogle Scholar
  24. Jombart, T. (2008). Adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics, 24, 1403–1405.CrossRefGoogle Scholar
  25. Jombart, T., Devillard, S., & Balloux, F. (2010). Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genetics, 11, 94.CrossRefGoogle Scholar
  26. Kaczmar, M. J., Wilson, V., & Leroux, P. (2000). The control of Sclerotinia sclerotiorum on oilseed rape: what future for carbendazim? Phytoma, 529, 31–33.Google Scholar
  27. Kamal, M. M., Savocchia, S., Lindbeck, K. D., & Ash, G. J. (2016). Biology and biocontrol of Sclerotinia sclerotiorum (Lib.) de Bary in oilseed Brassicas. Australasian Plant Pathology, 45, 1–14.CrossRefGoogle Scholar
  28. Kora, C., McDonald, M. R., & Boland, G. J. (2003). Sclerotinia of carrot. An example of phenological adaptation and bicyclic development by Sclerotinia sclerotiorum. Plant Disease, 87, 456–470.CrossRefGoogle Scholar
  29. Lehner, M. S., Paula Jr., T. J., Hora Jr., B. T., Teixeira, H., Vieira, R. F., Carneiro, J. E. S., & Mizubuti, E. S. G. (2015). Low genetic variability in Sclerotinia sclerotiorum populations from common bean fields in Minas Gerais State, Brazil, at regional, local and micro-scales. Plant Pathology, 64, 921–931.CrossRefGoogle Scholar
  30. Lehner, M. S., Trazilbo, J. P., & Mizubuti, E. S. G. (2016). Does hyphal-tip ensure the same allelic composition at SSR loci as monosporic isolates of Sclerotinia sclerotiorum? Journal of Phytopathology, 164, 417–420.CrossRefGoogle Scholar
  31. Lehner, M. S., Del Ponte, E. M., Gugino, B. K., Kikkert, J. R., & Pethybridge, S. J. (2017). Sensitivity and efficacy of boscalid, fluazinam and thiophanate-methyl for white mold control in snap bean in New York. Plant Disease, 101, 1253–1258.CrossRefGoogle Scholar
  32. Malvárez, G., Carbone, I., Grünwald, N. J., Subbarao, K. V., Schafer, M., & Kohn, L. M. (2007). New populations of Sclerotinia sclerotiorum from lettuce in California and peas and lentils in Washington. Phytopathology, 97, 470–483.CrossRefGoogle Scholar
  33. Mert-Turk, F., Ipek, M., Mermer, D., & Nicholson, P. (2007). Microsatellite and morphological markers reveal genetic variation within a population of Sclerotinia sclerotiorum from oilseed rape in the Canakkale Province of Turkey. Journal of Phytopathology, 155, 182–187.CrossRefGoogle Scholar
  34. Nicot, P. C., Avril, F., Duffaud, M., Leyronas, C., Troulet, C., Villeneuve, F., & Bardin, M. (2016). Are there regional differences in the susceptibility of Sclerotinia sclerotiorum strains to Coniothyrium minitans? IOBC-WPRS Bulletin, 117, 83–87.Google Scholar
  35. Petrofeza, S., & Nasser, L.C.B. (2012). Case study: Sclerotinia sclerotiorum: Genetic diversity and disease control. In: M. Caliskan (Ed) The molecular basis of plant genetic diversity. InTech,
  36. Purdy, L. H. (1979). Sclerotinia sclerotiorum: history, diseases and symptomatology, host range, geographic distribution, and impact. Phytopathology, 69, 875–880.CrossRefGoogle Scholar
  37. Rousset, F. (2008). GENEPOP’007: A complete reimplementation of the GENEPOP software for windows and linux. Molecular Ecology Resources, 8, 103–106.CrossRefGoogle Scholar
  38. Sexton, A. C., Whitten, A. R., & Howlett, B. J. (2006). Population structure of Sclerotinia sclerotiorum in an Australian canola field at flowering and stem-infection stages of the disease cycle. Genome, 49, 1408–1415.CrossRefGoogle Scholar
  39. Sirjusingh, C., & Kohn, L. M. (2001). Characterization of microsatellites in the fungal plant pathogen, Sclerotinia sclerotiorum. Molecular Ecology Notes, 1, 267–269.CrossRefGoogle Scholar
  40. Steadman, J. R. (1983). White mold - a serious yield-limiting disease of bean. Plant Disease, 6, 7346–7350.Google Scholar
  41. Tok, F. M., Dervis, S., & Arslan, M. (2016). Analysis of genetic diversity of Sclerotinia sclerotiorum from eggplant by mycelial compatibility, random amplification of polymorphism DNA (RAPD) and simple sequence repeat (SSR) analyses. Biotechnology and Biotechnological Equipment, 30, 921–928.CrossRefGoogle Scholar
  42. Walker, A. S., Gladieux, P., Decognet, V., Fermaud, M., Confais, J., Roudet, J., Bardin, M., Bout, A., Nicot, P. C., Poncet, C., & Fournier, E. (2015a). Population structure and temporal maintenance of the multihost fungal pathogen Botrytis cinerea: causes and implications for disease management. Environmental Microbiology, 17, 1261–1274.CrossRefGoogle Scholar
  43. Walker, A.S., Auclair, C., Rémuson, F., Micoud, A., Carpezat, J., Ravigné, V., & Fournier, E. (2015b). Status of resistance towards SDHIs in French populations of Sclerotinia sclerotiorum and characterization of resistant strains. Presented at Resistance 2015, Harpenden, UK.Google Scholar
  44. Warmington, R.J. (2014). Pathogen diversity, epidemiology and control of Sclerotinia disease in vegetable crops. PhD thesis, University of Warwick, UK.Google Scholar
  45. Winton, L. M., Leiner, R. H., & Krohn, A. L. (2006). Genetic diversity of Sclerotinia species from Alaskan vegetable crops. Canadian Journal of Plant Pathology, 28, 426–434.CrossRefGoogle Scholar
  46. Zhu, Z. Q., Zhou, F., Li, J. L., Zhu, F. X., & Ma, H. J. (2016). Carbendazim resistance in field isolates of Sclerotinia sclerotiorum in China and its management. Crop Protection, 81, 115–121.CrossRefGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2018

Authors and Affiliations

  • Christel Leyronas
    • 1
    Email author
  • Marc Bardin
    • 1
  • Karine Berthier
    • 1
  • Magali Duffaud
    • 1
  • Claire Troulet
    • 1
  • Marie Torres
    • 2
  • François Villeneuve
    • 3
  • Philippe C. Nicot
    • 1
  1. 1.Pathologie VégétaleINRAMontfavetFrance
  2. 2.Ctifl, Centre de BalandranBellegardeFrance
  3. 3.Ctifl, Centre de LanxadePrigonrieuxFrance

Personalised recommendations