Skip to main content
Log in

Effect of altering the steric hindrance of the nitrogen atom in 2,5-bis(pyridin-n-yl)-1,3,4 thiadiazole isomers on their ability to elicit tomato defense responses against Verticillium wilt and crown gall diseases

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Three isomers of the ligand 2,5-bis(pyridinyl)-1,3,4-thiadiazole, with the N atom of pyridine group in position 2, 3 or 4, named respectively, L2, L3 and L4 were compared for their use as plant defense activators. They were examined for their ability to protect tomato plants from Verticillium dahliae and Agrobacterium tumefaciens in the greenhouse, to induce reactive oxygen species and to activate plant defenses, including antioxidant enzymes. The three ligand isomers exhibited in vitro only slight inhibition of radial growth of V. dahliae, while no significant inhibition was observed for phytopathogenic bacteria. In the greenhouse, the three ligand isomers statistically reduced the severity of Verticillium wilt and crown gall on tomato plants, and the isomers L3 and L4 were the most efficient to control Verticillium wilt. This superiority was reflected in their differential ability to activate H2O2 accumulation, antioxidant enzymes including catalase and ascorbate peroxidase and other defense-related enzymes such as guaiacol peroxidase and polyphenol oxidase. These results demonstrated that the presence of the N atom within the two pyridinyl groups in the position 3 or 4 highly enhanced the activity of plant defense and antioxidant responses as well as their ability to reduce the severity of symptoms caused by V. dahliae on tomato.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alexieva, V., Sergiev, I., Mapelli, S., & Karanov, E. (2001). The effect of drought and ultraviolet radiation growth and stress markers in pea and wheat. Plant Cell Environment, 24, 1337–1344.

    Article  CAS  Google Scholar 

  • AL-Quraan, N. A., Al-Smadi, M. L., & Swaleh, A. F. (2015). GABA metabolism and ROS induction in lentil (Lens culinaris Medik) plants by synthetic 1,2,3-thiadiazole compounds. Journal of Plant Interactions, 10, 185–194.

    Article  CAS  Google Scholar 

  • Becke, A. D. (1993). Density-functional thermochemistry. III. The role of exact exchange. The Journal of Chemical Physics, 98, 5648–5652.

    Article  CAS  Google Scholar 

  • Bektas, Y., & Eulgem, T. (2015). Synthetic plant defense elicitors. Frontiers in Plant Sciences, 5. https://doi.org/10.3389/fpls.2014.00804.

  • Chawla, A., Chawla, P., & Baghel, U. S. (2014). Synthesis and biological evaluation of thiazole-thiadiazole bridged compounds. Asian Journal of Biochemical and Pharmaceutical Research, 4, 269–275.

    Google Scholar 

  • Chen, H. S., Li, Z. M., Han, Y. F., & Wang, Z. W. (1999). New fungicidally active pyrazolyl-substituted 1,3,4-thiadiazole compounds and their preparation. Chinese Chemistry Letters, 10, 365–366.

    Google Scholar 

  • Chen, C. J., Song, B. A., Yang, S., Xu, G. F., Bhadury, P. S., Jin, L. H., Hu, D. Y., Li, Q. Z., Liu, F., Xue, W., Lu, P., & Chen, Z. (2007). Synthesis and antifungal activities of 5-(3,4,5- trimethoxyphenyl)-2-sulfonyl-1,3,4-thiadiazole and 5- (3,4,5-trimethoxy phenyl)-2-sulfonyl-1,3,4-oxadiazole derivatives. Bioorganic & Medicinal Chemistry, 15, 3981–3989.

    Article  CAS  Google Scholar 

  • Cherrab, M., Bennani, A., Charest, P. M., & Serrhini, M. N. (2002). Pathogenecity and vegetative compatibility of Verticillium dahlia Kleb. Isolates from olives in Morocco. Journal of Phytopathology, 150(11–12), 703–709.

    Article  Google Scholar 

  • Conrath, U., Beckers, G. J. M., Flors, V., García-Agustín, P., Jakab, G., Mauch, F., Newman, M. A., Pieterse, C. M. J., Poinssot, B., Pozo, M. J., Pugin, A., Schaffrath, U., Jurriaan, T., Wendehenne, D., Zimmerli, L., & Mauch-Mani, B. (2006). Priming: Getting ready for battle. Molecular Plant-Microbe Interactions, 19(10), 1062–1071.

    Article  PubMed  CAS  Google Scholar 

  • Daayf, F., Nicole, M., & Geiger, J. P. (1995). Differentiation of Verticillium dahlia on the basis of vegetative compatibility and pathogenicity on cotton. European Journal of Plant Pathology, 101, 69–79.

    Article  Google Scholar 

  • Deepak, S. A., Ishii, H., & Park, P. (2006). Acibenzolar-S-methyl primes cell wall strengthening genes and reactive oxygen species forming/scavenging enzymes in cucumber after fungal pathogen attack. Physiological and Molecular Plant Pathology, 69, 52–59.

    Article  CAS  Google Scholar 

  • Elmeligie, S., Abdalla Khalil, N., Mohamed Ahmed, E., Emam, S. H., & Zaitone, S. A. (2016). Synthesis of new N1-substituted-5-aryl-3-(3,4,5-trimethoxyphenyl)-2-pyrazoline derivatives as antitumor agents targeting the colchicine site on tubulin. Biological and Pharmaceutical Bulletin, 39, 1611–1622.

    Article  PubMed  CAS  Google Scholar 

  • Faize, M., Faize, L., Koike, N., Ishizaka, M., & Ishii, H. (2004). Acibenzolar-S-methyl-induced resistance to Japanese pear scab is associated with potentiation of multiple defense responses. Phytopathology, 94, 604–612.

    Article  PubMed  CAS  Google Scholar 

  • Faize, M., Faize, L., & Ishii, H. (2009). Gene expression during acibenzolar-S-methyl-induced priming for potentiated responses to Venturia nashicola in Japanese pear. Journal of Phytopathology, 157, 137–144.

    Article  CAS  Google Scholar 

  • Faize, M., Burgos, L., Faize, L., Petri, C., Barba-Espin, G., Diaz-Vivancos, P., Clemente-Moreno, M. J., Alburquerque, N., & Hernandez, J. A. (2012). Modulation of tobacco bacterial disease resistance using cytosolic ascorbate peroxidase and cu/Zn superoxide dismutase. Plant Pathology, 61, 858–866.

    Article  CAS  Google Scholar 

  • Foyer, C. H., & Noctor, G. (2005). Redox homeostasis and antioxidant signaling: A metabolic interface between stress perception and physiological responses. Plant Cell, 17, 1866–1875.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Iwata, M. (2001). Probenazole-a plant defence activator. Pesticide Outlook, 12, 28–31.

    Article  CAS  Google Scholar 

  • Kadota, Y., Shirasu, K., & Zipfel, C. (2015). Regulation of the NADPH oxidase RBOHD during plant immunity. Plant Cell Physiology, 56, 1472–1480.

    Article  PubMed  CAS  Google Scholar 

  • Kessmann, H., Staub, T., Hofmann, C., Maetzke, T., Herzog, J., Ward, E., Uknes, S., & Ryals, J. (1994). Induction of systemic acquired resistance in plants by chemicals. Annual Review of Phytopathology, 32, 439–459.

    Article  PubMed  CAS  Google Scholar 

  • King, E. O., Ward, M. K., & Raney, D. E. (1954). Two simple media for the demonstration of pyocyanin and fluorescein. Journal of Laboratory and Clinical Medicine, 44, 301–307.

    PubMed  CAS  Google Scholar 

  • Klosterman, S. J., Subbarao, K. V., Kang, S., Veronese, P., Gold, S. E., et al. (2011). Comparative genomics yields insights into niche adaptation of plant vascular wilt pathogens. PLoS Pathogens, 7, e1002137.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kubo, H., Sato, R., Hamura, I., & Ohi, T. (1970). Herbicidal activity of 1,3,4-thiadiazole derivatives. Journal of Agriculture and Food Chemistry, 18, 60–65.

    Article  CAS  Google Scholar 

  • Kumar, J. A., Sharma, S., Vaidya, A., Ravichandran, V., & Agrawal, R. K. (2013). 1,3,4-thiadiazole and its derivatives: A review on recent progress in biological activities. Chemical Biology Drug Design, 81, 557–576.

    Article  CAS  Google Scholar 

  • Kuzniak, E., & Urbanek, H. (2000). The involvement of hydrogen peroxide in plant responses to stresses. Acta Physiologica Plantarum, 22, 195–203.

    Article  CAS  Google Scholar 

  • Lebrini, M., Bentiss, F., & Legrenée, M. (2005). Rapid synthesis of 2,5-disubtituted 1,3,4-thiadiazoles under microwave irradiation. Journal of Heterocyclic Chemistry, 42, 991–994.

    Article  CAS  Google Scholar 

  • Lee, C., Yang, W., & Parr, R. G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B, 37, 785–789.

    Article  CAS  Google Scholar 

  • Li, L., & Steffens, J. C. (2002). Overexpression of polyphenol oxidase in transgenic tomato plants results in enhanced bacterial disease resistance. Planta, 215, 239–247.

    Article  PubMed  CAS  Google Scholar 

  • Masia, A., Ventura, M., Gemma, H., & Sansavini, S. (1998). Effect of some plant growth regulator treatments on apple fruit ripening. Plant Growth Regulation, 25, 127–134.

    Article  CAS  Google Scholar 

  • Mayer, A. M. (2002). Polyphenol oxidases in plants and fungi: Going places? Phytochemistry, 67, 2318–2331.

    Article  CAS  Google Scholar 

  • Mishra, G., Singh, A. K., & Jyoti, K. (2011). Review article on 1,3,4-thiadiazole derivaties and it’s pharmacological activities. International Journal of ChemTech Research, 3, 1380–1393.

    CAS  Google Scholar 

  • Moerschbacher, B., Heck, B., Kogel, K. H., Obst, O., & Reisener, H. G. (1986). An elicitor of the hypersensitive lignification response in wheat leaves isolated from the rust fungus Puccinia graminis f. sp. tritici. II. Induction of enzymes correlated with the biosynthesis of lignin. Zeitschrift fur Naturforschung 41c, 839-844.

  • Oostendorp, M., Kunz, W., Dietrich, B., & Staub, T. (2001). Induced disease resistance in plants by chemicals. European Journal of Plant Pathology, 107, 19–28.

    Article  CAS  Google Scholar 

  • Pitzschke, A. (2013). Agrobacterium infection and plant defense - transformation success hangs by a thread. Frontiers in Plant Science, 4, 519. https://doi.org/10.3389/fpls.2013.00519.

    Article  PubMed  PubMed Central  Google Scholar 

  • Quiroga, M., Guerrero, C., Botella, M. A., Barcelo, A., Amaya, I., Medina, M. I., Alonso, F. J., de Forchetti, S. M., Tigier, H., & Valpuesta, V. (2000). A tomato peroxidase involved in the synthesis of lignin and suberin. Plant Physiology, 122, 1119–1127.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Smaili, A., Mazoir, N., Rifai, L. A., Koussa, T., Makroum, K., Benharref, A., Faize, L., Alburquerque, N., Burgos, L., Belfaiza, M., & Faize, M. (2017). Antimicrobial activity of two semisynthetic triterpene derivatives from Euphorbia officinarum latex against fungal and bacterial phyotopathogens. Natural Product Communications, 12, 331–336.

    Google Scholar 

  • Swamy, S. N., Basappa, Priya, B. S., Prabhuswamy, B., Doreswamy, B. H., Prasad, J. S., & Rangappa, K. S. (2006). Synthesis of pharmaceutically important condensed heterocyclic 4,6-disubstituted-1,2,4-triazolo-1,3,4-thiadiazole derivatives as antimicrobials. European Journal of Medicinal Chemistry, 41, 531–538.

    Article  PubMed  CAS  Google Scholar 

  • Tahghighi, A., & Babalouei, F. (2017). Thiadiazoles: The appropriate pharmacological scaffolds with leishmanicidal and antimalarial activities: A review. Iranian Journal of Basic Medical Sciences, 20, 613–622.

    PubMed  PubMed Central  Google Scholar 

  • Yasuda, M., Nakashita, H., & Yoshida, S. (2004). Tiadinil, a novel class of activator of systemic acquired resistance, induces defense gene expression and disease resistance in tobacco. Journal of Pesticide Science, 29, 46–49.

    Article  CAS  Google Scholar 

  • Yasuda, M., Kusajima, M., Nakajima, M., Akutsu, K., Kudo, T., Yoshida, S., et al. (2006). Thiadiazole carboxylic acid moiety of tiadinil, sv-03, induces systemic acquired resistance in tobacco without salicylic acid accumulation. Journal of Pesticide Science, 31, 329–334.

    Article  CAS  Google Scholar 

  • Zine, H., Rifai, L. A., Faize, M., Smaili, A., Makroum, K., Belfaiza, M., Kabil, E. M., & Koussa, T. (2016). Duality of acibenzolar-S-methyl in the inhibition of pathogen growth and induction of resistance during the interaction tomato / Vertcillium dahliae. European Journal of Plant Pathology, 145, 61–69.

    Article  CAS  Google Scholar 

  • Zine, H., Rifai, L. A., Koussa, T., Bentiss, F., Guesmi, S., Laachir, A., Makroum, K., Belfaiza, M., & Faize, M. (2017). The mononuclear nickel (II) complex bis(azido-kN)bis[2,5-bis(pyridin-2-yl)-1,3,4-thiadiazole-κ(2) N(2) ,N(3) ]nickel(II) protects tomato from Verticillium dahliae by inhibiting the fungal growth and activating plant defenses. Pesticide Managment Science, 73, 188–197.

    Article  CAS  Google Scholar 

  • Zucconi, F., Pera, A., Forte, M., & De Bertoli, M. (1981). Evaluating toxicity in immature compost. Biocycle, 22, 54–57.

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the CUR CA2D of Chouaib Doukkali University (El Jadida-Morocco) for its support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Faize.

Ethics declarations

Conflict of interest

The authors state they have no conflict of interest.

Ethical approval

This research does not contain any studies with human or animal subjects. The data presented in the article are original and have not been published in the public. All authors have written, read and consented to the manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smaili, A., Laachir, A., Rifai, L.A. et al. Effect of altering the steric hindrance of the nitrogen atom in 2,5-bis(pyridin-n-yl)-1,3,4 thiadiazole isomers on their ability to elicit tomato defense responses against Verticillium wilt and crown gall diseases. Eur J Plant Pathol 151, 1035–1048 (2018). https://doi.org/10.1007/s10658-018-1441-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-018-1441-8

Keywords

Navigation