Advertisement

Role of cell wall and cell membrane integrity in imparting defense response against Phytophthora capsici in black pepper (Piper nigrum L.)

  • V. V. Vandana
  • R. Suseela BhaiEmail author
  • R. Ramakrishnan Nair
  • Shamina Azeez
Article
  • 51 Downloads

Abstract

The structural defense response of a black pepper line (04-P24) showing root resistance to Phytophthora capsici was studied in comparison with a highly susceptible line (Sreekara). Role of cell wall reinforcement and cell membrane integrity was analyzed. Cell membrane integrity was studied under hydroponic system in terms of leakage of electrolytes caused by the cell membrane damage due to pathogen entry. Root cell membrane rupture and resultant phenolic leakage were clearly visible in the form of color change of the liquid phase during the course of infection. Root leachates of Sreekara turned highly dark due to the increased level of phenol leakage which was proportional to the cell membrane damage. The root leachate was analyzed for change in conductivity, total phenols and ortho-dihydroxy (OD) phenols. Cell wall reinforcement of the vascular tissues of black pepper root upon pathogen inoculation was analyzed histochemically. Toluidine blue O and Maule staining differentiated the intensity of lignin deposition in the root cells of both lines and it was comparatively stronger in the resistant line. Scanning electron microscopy revealed that hyphae of P. capsici are not penetrating the root of 04-P24 supporting the finding that roots of this line don’t support Phytophthora infection.

Keywords

Black pepper Cell membrane Cell wall Conductivity Lignin Phenols Phytophthora capsici 

Notes

Acknowledgements

This research was funded by the Kerala State Council for Science, Technology and Environment (KSCSTE), Council Order No. (T)364/FSHP/2010/CSTE, Thiruvananthapuram, Kerala, India. Authors acknowledge Director, ICAR-IISR, Kozhikode, Kerala, India for facilities provided. The authors gratefully acknowledge the Director, National Institute of Technology, Kozhikode for providing the SEM facility.

Compliance with ethical standards

Ethical statement

This research article is not submitted elsewhere for publication and this manuscript complies to the Ethical Rules applicable for this journal.

References

  1. Asselbergh, B., Curvers, K., França, S. C., Audenaert, K., Vuylsteke, M., Van Breusegem, F., & Höfte, M. (2007). Resistance to Botrytis cinerea in sitiens, an abscisic acid-deficient tomato mutant, involves timely production of hydrogen peroxide and cell wall modifications in the epidermis. Plant Physiology, 144(4), 1863–1877.CrossRefGoogle Scholar
  2. Bais, H. P., Vepachedu, R., Gilroy, S., Callaway, R. M., & Vivanco, J. M. (2003). Allelopathy and exotic plant invasion: From molecules and genes to species interactions. Science, 301(5638), 1377–1380.CrossRefGoogle Scholar
  3. Bais, H. P., Park, S. W., Weir, T. L., Callaway, R. M., & Vivanco, J. M. (2004). How plants communicate using the underground information superhighway. Trends in Plant Science, 9(1), 26–32.CrossRefGoogle Scholar
  4. Belanger, R. R., & Bushnell, W. R. (2002). The powdery mildews: A Comprehensive treatise. St. Paul: APS Press.Google Scholar
  5. Benhamou, N., & Bélanger, R. R. (1998). Induction of systemic resistance to Pythium damping-off in cucumber plants by benzothiadiazole: Ultrastructure and cytochemistry of the host response. The Plant Journal, 14(1), 13–21.CrossRefGoogle Scholar
  6. Bertin, C., Yang, X., & Weston, L. A. (2003). The role of root exudates and allelochemicals in the rhizosphere. Plant and Soil, 256(1), 67–83.CrossRefGoogle Scholar
  7. Bhai, R. S., Eapen, S. J., Anandaraj, M., & Saji, K. V. (2010). Identification of Phytophthora and nematode-resistant source-from opens pollinated progenies of black pepper (Piper nigrum) using a modified protocol. Indian Journal of Agricultural Science, 80(10), 893–897.Google Scholar
  8. Bishop, D. L., Chatterton, N. J., Harrison, P. A., & Hatfield, R. D. (2002). Changes in carbohydrate coordinated partitioning and cell wall remodeling with stress-induced pathogenesis in wheat sheaths. Physiological and Molecular Plant Pathology, 61(1), 53–63.CrossRefGoogle Scholar
  9. Buonaurio, R. (2008). Infection and plant defense responses during plant-bacterial interaction. Plant-Microbe Interactions, 169–197.Google Scholar
  10. Cesco, S., Neumann, G., Tomasi, N., Pinton, R., & Weisskopf, L. (2010). Release of plant-borne flavonoids into the rhizosphere and their role in plant nutrition. Plant and Soil, 329(1–2), 1–25.CrossRefGoogle Scholar
  11. Curvers, K., Seifi, H., Mouille, G., De Rycke, R., Asselbergh, B., Van Hecke, A., Vanderschaeghe, D., Höfte, H., Callewaert, N., van Breusegem, F., & Höfte, M. (2010). Abscisic acid deficiency causes changes in cuticle permeability and pectin composition that influence tomato resistance to Botrytis cinerea. Plant Physiology, 154(2), 847–860.CrossRefGoogle Scholar
  12. De Waard, P. W. F. (1986). Current state and prospective trends of black pepper (Piper nigrum L.) production. Outlook on Agriculture, 15(4), 186–195.CrossRefGoogle Scholar
  13. Dixon, R. A. (2001). Natural products and plant disease resistance. Nature, 411(6839), 843–847.CrossRefGoogle Scholar
  14. Egea, C., Ahmed, A. S., Candela, M., & Candela, M. E. (2001). Elicitation of peroxidase activity and lignin biosynthesis in pepper suspension cells by Phytophthora capsici. Journal of Plant Physiology, 158(2), 151–158.CrossRefGoogle Scholar
  15. Eltahir, A. S., & AbuReish, B. I. (2010). Comparative morphological and anatomical studies of the barks of three Albizzia species. Journal of Chemical and Pharmaceutical Research, 2(3), 260–268.Google Scholar
  16. Enstone, D. E., Peterson, C. A., & Ma, F. (2002). Root endodermis and exodermis: Structure, function, and responses to the environment. Journal of Plant Growth Regulation, 21(4), 335–351.CrossRefGoogle Scholar
  17. Eynck, C., Koopmann, B., Karlovsky, P., & Von Tiedemann, A. (2009). Internal resistance in winter oilseed rape inhibits systemic spread of the vascular pathogen Verticillium longisporum. Phytopathology, 99(7), 802–811.CrossRefGoogle Scholar
  18. Faulkner, G., & Kimmins, W. C. (1975). Staining reactions of the tissue bordering lesions induced by wounding, tobacco mosaic virus, and tobacco necrosis virus in bean. Phytopathology, 65(12), 1396–1400.CrossRefGoogle Scholar
  19. Griffin, M. J. (1977). Cocoa Phytophthora workshop, Rothamsted Experimental Station, England, 24–26 may 1976. PANS, 23(1), 107–110.CrossRefGoogle Scholar
  20. Guest, D., & Brown, J. (1997). Plant defense against pathogens. In J. F. Brown & H. J. Ogle (Eds.), Plant pathogens and plant diseases, Rockvale publications (pp. 263–286). Australia: Armidale NSW 2350.Google Scholar
  21. Gutfinger, T. (1981). Polyphenols in olive oils. Journal of the American Oil Chemists Society, 58(11), 966–968.CrossRefGoogle Scholar
  22. Heath, M. C. (2000). Hypersensitive response-related death. Plant Molecular Biology, 44, 321–334.CrossRefGoogle Scholar
  23. Hoagland, D.R., & Arnon, D.I., 1950. The water-culture method for growing plants without soil. Circ. 347. Univ. of Calif. Agric. Exp. Station, Berkley.Google Scholar
  24. Huitema, E., Bos, J. I., Tian, M., Win, J., Waugh, M. E., & Kamoun, S. (2004). Linking sequence to phenotype in Phytophthora–plant interactions. Trends in Microbiology, 12(4), 193–200.CrossRefGoogle Scholar
  25. Jackson, K. M., & Ilamurugu, K. (2014). Metabolic profiling of rice root exudates and its impact on rhizosphere microbial dynamics under aerobic conditions. Research Journal of Agricultural Sciences, 5(4), 777–781.Google Scholar
  26. Johansen, D. A. (1940). Plant microtechnique (pp. 27–154). New York: McGraw Hill.Google Scholar
  27. Jones, J. D., & Dangl, J. L. (2006). The plant immune system. Nature, 444(7117), 323–329.CrossRefGoogle Scholar
  28. Lanoue, A., Burlat, V., Henkes, G. J., Koch, I., Schurr, U., & Röse, U. S. (2010). De novo biosynthesis of defense root exudates in response to Fusarium attack in barley. New Phytologist, 185(2), 577–588.CrossRefGoogle Scholar
  29. Li, X. G., Zhang, T. L., Wang, X. X., Hua, K., Zhao, L., & Han, Z. M. (2013). The composition of root exudates from two different resistant peanut cultivars and their effects on the growth of soil-borne pathogen. International Journal of Boilogical Science, 9(2), 164–173.Google Scholar
  30. Lipka, V., Dittgen, J., Bednarek, P., Bhat, R., Wiermer, M., Stein, M., Landtag, J., Brandt, W., Rosahl, S., Scheel, D., & Llorente, F. (2005). Pre-and postinvasion defenses both contribute to nonhost resistance in Arabidopsis. Science, 310(5751), 1180–1183.CrossRefGoogle Scholar
  31. Menden, B., Kohlhoff, M., & Moerschbacher, B. M. (2007). Wheat cells accumulate a syringyl-rich lignin during the hypersensitive resistance response. Phytochemistry, 68(4), 513–520.CrossRefGoogle Scholar
  32. Nicholson, R. L., & Hammerschmidt, R. (1992). Phenolic compounds and their role in disease resistance. Annual Review of Phytopathology, 30(1), 369–389.CrossRefGoogle Scholar
  33. O'brien, T. P., Feder, N., & McCully, M. E. (1964). Polychromatic staining of plant cell walls by toluidine blue O. Protoplasma, 59(2), 368–373.CrossRefGoogle Scholar
  34. Oliver, J. P., Castro, A., Gaggero, C., Cascón, T., Schmelz, E. A., Castresana, C., & De León, I. P. (2009). Pythium infection activates conserved plant defense responses in mosses. Planta, 230(3), 569–579.CrossRefGoogle Scholar
  35. Pearce, R. B., & Rutherford, J. (1981). A wound-associated suberized barrier to the spread of decay in the sapwood of oak (Quercus robur L.). Physiological Plant Pathology, 19(3), 359IN26–369IN31.CrossRefGoogle Scholar
  36. Pellizzari, E. D., Kuc, J., & Williams, E. B. (1970). The hypersensitive reaction in Malus species: Changes in the leakage of electrolytes from apple leaves after inoculation with Venturia inaequalis. Phytopathology, 60, 373–376.CrossRefGoogle Scholar
  37. Ramírez, V., Agorio, A., Coego, A., García-Andrade, J., Hernández, M. J., Balaguer, B., Ouwerkerk, P. B., Zarra, I., & Vera, P. (2011). MYB46 modulates disease susceptibility to Botrytis cinerea in Arabidopsis. Plant Physiology, 155(4), 1920–1935.CrossRefGoogle Scholar
  38. Romero, D., Rivera, M. E., Cazorla, F. M., Codina, J. C., Fernández-Ortuño, D., Torés, J. A., Pérez-García., A., & de Vicente, A. (2008). Comparative histochemical analyses of oxidative burst and cell wall reinforcement in compatible and incompatible melon–powdery mildew (Podosphaera fusca) interactions. Journal of Plant Physiology, 165(18), 1895–1905.Google Scholar
  39. Shi, H., Liu, Z., Zhu, L., Zhang, C., Chen, Y., Zhou, Y., Li, F., & Li, X. (2012). Overexpression of cotton (Gossypium hirsutum) dirigent1 gene enhances lignification that blocks the spread of Verticillium dahliae. Acta Biochimica et Biophysica Sinica, 44(7), 555–564.CrossRefGoogle Scholar
  40. Singh, A. (2006). Cell membrane injury in flag leaf of wheat by brown rust (Puccinia recondita rob. Ex. Desm. f. Sp. tritici) at different nitrogen levels. Journal of Phytological Research, 19(1), 111–113.Google Scholar
  41. Thankamani, C. K. (2008). Black pepper. In V. A. Parthasarathy, K. Kandiannan, & V. Srinivasan (Eds.), Organic spices (p. 250). New Delhi: New India Publishing Agency.Google Scholar
  42. Trivedi, M., & Singh, A. (2014). Cell membrane injury in barley (Hordeum vulgare L.) associated with infection by Drechslera graminea, stripe disease. International Journal of Scientific & Technology Research, 3(2), 320–323.Google Scholar
  43. Uren, N. C. (2000). Types, amounts and possible functions of compounds released into the rhizosphere by soil grown plants. In R. Pinton, Z. Varanini, & P. Nannipieri (Eds.), The Rhizosphere: Biochemistry and organic substances at the soil interface (pp. 19–40). New York: Marcel Dekker.Google Scholar
  44. van Kan, J. A. (2006). Licensed to kill: The lifestyle of a necrotrophic plant pathogen. Trends in Plant Science, 11(5), 247–253.CrossRefGoogle Scholar
  45. Vandana, V. V., Bhai, R. S., & Shamina, A. (2014). Biochemical defense responses of black pepper (Piper nigrum L.) lines to Phytophthora capsici. Physiological and Molecular Plant Pathology, 88, 18–27.CrossRefGoogle Scholar
  46. Vuković, R., Bauer, N., & Ćurković-Perica, M. (2013). Genetic elicitation by inducible expression of β-cryptogein stimulates secretion of phenolics from Coleus blumei hairy roots. Plant Science, 199, 18–28.CrossRefGoogle Scholar
  47. Wang, G., Lin, Q., & Xu, Y. (2007). Tetraena mongolica maxim can accumulate large amounts of triacylglycerol in phloem cells and xylem parenchyma of stems. Phytochemistry, 68(15), 2112–2117.CrossRefGoogle Scholar
  48. Wang, P., Liu, X., Guo, J., Liu, C., Fu, N., & Shen, H. (2015). Identification and expression analysis of candidate genes associated with defense responses to Phytophthora capsici in pepper line “PI 201234”. International Journal of Molecular Sciences, 16(5), 11417–11438.CrossRefGoogle Scholar
  49. Wurst, S., Wagenaar, R., Biere, A., & Van der Putten, W. H. (2010). Microorganisms and nematodes increase levels of secondary metabolites in roots and root exudates of Plantago lanceolata. Plant and Soil, 329(1–2), 117–126.CrossRefGoogle Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2019

Authors and Affiliations

  • V. V. Vandana
    • 1
  • R. Suseela Bhai
    • 1
    • 2
    Email author
  • R. Ramakrishnan Nair
    • 1
  • Shamina Azeez
    • 3
  1. 1.ICAR-Indian Institute of Spices ResearchKozhikodeIndia
  2. 2.Division of Crop ProtectionICAR-Indian Institute of Spices ResearchKozhikodeIndia
  3. 3.ICAR- Indian Institute of Horticultural ResearchKozhikodeIndia

Personalised recommendations