Advertisement

Antagonistic potential of lipopeptide producing Bacillus amyloliquefaciens against major vegetable pathogens

  • Duraisamy SaravanakumarEmail author
  • Augustus Thomas
  • Neera Banwarie
Article
  • 63 Downloads

Abstract

The study aimed to identify novel antagonistic microorganisms suitable for biological control of diseases in vegetables grown under tropical conditions. Forty seven Bacillus strains were isolated from rhizosphere soils of Trinidad and they were identified as B. amyloliquefaciens, B. subtilis, B. pumilus, B. cereus, B. megaterium, B. mycoides, B. aryabhattai based on 16S rRNA gene analysis. All Bacillus strains were screened for antibiotic lipopeptide genes viz., Iturin A synthetase C (ituC), Iturin A synthetase D (ituD), Bacillomycin D synthetase (BmyB), Bacilysin synthetase A (bacA), Fengycin synthetase (fenD), Surfactin (SrfC) and Zwittermycin A (ZmA). The study revealed the presence of iturin, bacillomycin, bacilysin, fengycin, surfactin and zwittermycin synthesizing genes in B. amyloliquefaciens, B. cereus, B. megaterium and B. pumilus strains. Testing of different Bacillus species against vegetable pathogens revealed greater antagonistic activity of lipopeptide producing B. amyloliquefaciens strains as compared with non-producers. Phylogenetic analysis of Bacillus species based on 16S rRNA gene clearly distinguished the lipopeptide producers from non-lipopeptide producers. The lipopeptide activity and biocontrol potential of B. amyloliquefaciens strains were further demonstrated in lettuce plants against Cercospora leaf spot under a protected cultivation system as a model. The study provided evidence for the biocontrol potential of lipopeptide producing B. amyloliqufaciens strains in the control of disease causing agents in vegetables. These results are promising for the development of bioagents suitable for disease management in tropical conditions.

Keywords

B.amyloliquefaciens Lipopeptides Phylogenetic analysis 16S rRNA gene Cercospora 

Notes

Acknowledgements

The research was supported by UWI Campus Research and Publication Fund and UWI-TT RDI Fund, The University of the West Indies, St. Augustine Campus, Trinidad and Tobago.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants and/or animals

The authors declare that the current research did not involve human participants or animals as test materials.

Informed consent

Not applicable for the current research work.

Supplementary material

10658_2018_1658_MOESM1_ESM.docx (1.5 mb)
ESM 1 (DOCX 1558 kb)

References

  1. Arrebola, E., Jacobs, R., & Korsten, L. (2010). Iturin a is the principal inhibitor in the biocontrol activity of Bacillus amyloliquefaciens PPCB004 against postharvest fungal pathogens. Journal of Applied Microbiology, 108, 386–395.CrossRefPubMedGoogle Scholar
  2. Athukorala, S. N., Fernando, W. G., & Rashid, K. Y. (2009). Identification of antifungal antibiotics of Bacillus species isolated from different microhabitats using polymerase chain reaction and MALDI-TOF mass spectrometry. Canadian Journal of Microbiology, 55(9), 1021–1032.CrossRefPubMedGoogle Scholar
  3. Baysal, O.¨., Lai, D., Xu, H. H., Siragusa, M., Caliskan, M., Carimi, F., da Silva, J. A. T., & Tor, M. (2013). A proteomic approach provides new insights into the control of soil-borne plant pathogens by Bacillus species. PLoS One, 8(1), e53182.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Blackwood, K. S., Turenne, C. Y., Harmsen, D., & Kabani, A. M. (2004). Reassessment of sequence based targets for identification of Bacillus species. Journal of Clinical Microbiology, 42, 1626–1630.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Cano, R. J., Borucki, M. K., Higby-Schweitzer, M., Poinar, H. N., Poinar, G. O., & Pollard, K. J. (1994). Bacillus DNA in fossil bees: An ancient symbiosis? Applied and Environmental Microbiology, 60, 2164–2167.PubMedPubMedCentralGoogle Scholar
  6. Chitarra, G. S., Breeuwer, P., Nout, M. J. R., Van Aelst, A. C., Rombouts, F. M., & Abee, T. (2003). An antifungal compound produced by Bacillus subtilis YM 10-20 inhibits germination of Penicillium roqueforti conidiospores. Journal of Applied Microbiology, 94(2), 159–166.CrossRefPubMedGoogle Scholar
  7. Chowdhury, S. P., Hartmann, A., Gao, X., & Borriss, R. (2015). Biocontrol mechanism by root-associated Bacillus amyloliquefaciens FZB42 - a review. Frontiers in Microbiology, 6, 780.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Chung, S., Kong, H., Buyer, J. S., Lakshman, D. K., Lydon, J., Kim, S. D., & Roberts, D. P. (2008). Isolation and partial characterization of Bacillus subtilis ME488 for suppression of soilborne pathogens of cucumber and pepper. Applied Microbiology and Biotechnology, 80, 115–123.CrossRefPubMedGoogle Scholar
  9. Dereeper, A., Guignon, V., Blanc, G., Audic, S., Buffet, S., Chevenet, F., Dufayard, J.F., Guindon, S., Lefort, V., Lescot, M., Claverie, J.M., & Gascuel, O. (2008) Phylogeny.fr:Robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 1, 36 (Web Server issue):W465–W469.
  10. Dereeper, A., Audic, S., Claverie, J. M., & Blanc, G. (2010). Blast-explorer helps you building datasets for phylogenetic analysis. BMC Evolutionary Biology, 12(10), 8.CrossRefGoogle Scholar
  11. Gond, S. K., Bergen, M. S., Torres, M. S., & White, J. F., Jr. (2015). Endophytic Bacillus spp. produce antifungal lipopeptides and induce host defence gene expression in maize. Microbiological Research, 172, 79–87.CrossRefPubMedGoogle Scholar
  12. Goto, K., Omura, T., Hara, Y., & Sadaie, Y. (2000). Application of the partial 16S rDNA sequence as an index for rapid identification of species in the genus Bacillus. The Journal of General and Applied Microbiology, 46, 1–8.CrossRefPubMedGoogle Scholar
  13. Grosch, R., Junge, H., Krebs, B., & Bochow, H. (1999). Use of Bacillus subtilis as biocontrol agent. III. Influence of Bacillus subtilis on fungal root diseases and on yield in soilless culture. J Plant Dis Prot, 106, 568–580.Google Scholar
  14. Guel, A., Kidoglu, F., Tuzel, Y., & Tuzel, I. H. (2008). Effects of nutrition and Bacillus amyloliquefaciens on tomato (Solanium lycopersicum L.) growing in perlite. Span Agric J Res, 6, 422–429.CrossRefGoogle Scholar
  15. Guo, Q., Dong, W., Li, S., Lu, X., Wang, P., Zhang, X., Wang, Y., & Ma, P. (2014). Fengycin produced by Bacillus subtilis NCD-2 plays a major role in biocontrol of cotton seedling damping-off disease. Microbiological Research, 169, 533–540.CrossRefPubMedGoogle Scholar
  16. Heidarzadeh, N., & Baghaee-Ravari, S. (2015). Application of Bacillus pumilus as a potential biocontrol agent of Fusarium wilt of tomato. Archives of Phytopathology and Plant Protection, 48(13–16), 841–849.CrossRefGoogle Scholar
  17. Kaushal, M., Kumar, A., & Kaushal, R. (2017). Bacillus pumilus strain YSPMK11 as plant growth promoter and bicontrol agent against Sclerotinia sclerotiorum. 3 Biotech, 7(2), 90.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Kloepper, J. W., Zablowicz, R. M., Tipping, B., & Lifshitz, R. (1991). Plant growth mediated by bacterial rhizosphere colonizers. In D. L. Keister & B. Gregan (Eds.), The rhizosphere and plant growth. BARC Symposium (Vol. 14, pp. 315–326).Google Scholar
  19. Krieg, N.R., & Holt, J.G. (1984) Bergey’s Manual of Systemetic Bacteriology.-vol. 1. William and Wilkins, Baltimore, London.Google Scholar
  20. Kröber, M., Wibberg, D., Grosch, R., Eikmeyer, F., Verwaaijen, B., Chowdhury, S. P., Hartmann, A., Pühler, A., & Schlüter, A. (2014). Effect of the strain Bacillus amyloliquefaciens FZB42 on the microbial community in the rhizosphere of lettuce under field conditions analyzed by whole metagenome sequencing. Frontiers in Microbiology, 5.Google Scholar
  21. Lwin, M., & Ranamukhaarachchi, S. L. (2006). Development of biological control of Ralstonia solanacearum through antagonistic microbial populations. International Journal of Agriculture and Biology, 8(5), 657–660.Google Scholar
  22. Manikandan, R., Saravanakumar, D., Rajendran, L., Raguchander, T., & Samiyappan, R. (2010). Standardization of liquid formulation of Pseudomonas fluorescens Pf1 for its efficacy against Fusarium wilt of tomato. Biological Control, 54(2), 83–89.CrossRefGoogle Scholar
  23. Mhlongo, M. I., Piater, L. A., Madala, N. E., Labuschagne, N., & Dubery, I. A. (2018). The chemistry of plant–microbe interactions in the rhizosphere and the potential for metabolomics to reveal signaling related to defense priming and induced systemic resistance. Frontiers in Plant Science, 9, 112.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Moyne, A. L., Shelby, R., Cleveland, T. E., & Tuzun, S. (2001). Bacillomycin D: An iturin with antifungal activity against Aspergillus flavus. Journal of Applied Microbiology, 90(4), 622–629.CrossRefPubMedGoogle Scholar
  25. Ongena, M., Jourdan, E., Adam, A., Paquot, M., Brans, A., Joris, B., Arpigny, J. L., & Thonart, P. (2007). Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environmental Microbiol, 9, 1084–1090.CrossRefGoogle Scholar
  26. Pollard, G. V. (1991). Constraints to IPM development and a strategy for management of tomato and cabbage pests in Trinidad, West Indies. Tropical Pest Management, 37(1), 59–62.CrossRefGoogle Scholar
  27. Rajendran, L., Saravanakumar, D., Raguchander, T., Karthikeyan, G., & Samiyappan, R. (2006). Endophytic bacterial induction of defence enzymes against bacterial blight of cotton. Phytopathologia Mediterranea, 45(3), 203–214.Google Scholar
  28. Ramarathnam, R., Bo, S., Chen, Y., Fernando, W. D., Xuewen, G., & De Kievit, T. (2007). Molecular and biochemical detection of fengycin-and bacillomycin D-producing Bacillus spp. antagonistic to fungal pathogens of canola and wheat. Canadian J Microbiol, 53(7), 901–911.CrossRefGoogle Scholar
  29. Rangaswami, G. (1972). Diseases of crop plants in India (p. 520). New Delhi: Prentice Hall of India Pvt. Ltd..Google Scholar
  30. Roy, A., Mahata, D., Paul, D., Korpole, S., Franco, O. L., & Mandal, S. M. (2013). Purification, biochemical characterization and self-assembled structure of a fengycin-like antifungal peptide from Bacillus thuringiensis strain SM1. Frontiers in Microbiology, 4, 332.PubMedPubMedCentralGoogle Scholar
  31. Saravanakumar, D., & Badrie, N. (2016) Use of biotechnology in promoting novel food and agriculturally important microorganisms. In: Gupta VK, Sharma GD, Tuohy MG, Gaur R. editors. The Handbook of Microbial Bioresources, CABI, UK, p.159–178.Google Scholar
  32. Saravanakumar, D., & Samiyappan, R. (2007). ACC deaminase from Pseudomonas fluorescens mediated saline resistance in groundnut (Arachis hypogea) plants. Journal of Applied Microbiology, 102, 1283–1292.CrossRefPubMedGoogle Scholar
  33. Saravanakumar, D., Harish, S., Loganathan, M., Vivekananthan, R., Rajendran, L., Raguchander, T., & Samiyappan, R. (2007a). Rhizobacterial bioformulation for the effective management of Macrophomina root rot in mungbean. Arch Phytopathol Plant Protect, 40(5), 323–337.CrossRefGoogle Scholar
  34. Saravanakumar, D., Vijayakumar, C., Kumar, N., & Samiyappan, R. (2007b). PGPR induced defense responses in tea plants against blister blight disease. Crop Protection, 26, 556–565.CrossRefGoogle Scholar
  35. Saravanakumar, D., Lavanya, N., Muthumeena, B., Raguchander, T., Suresh, S., & Samiyappan, R. (2008). Pseudomonas fluorescens mediated volatiles in rice plants enhancing natural enemy population against leaffolder (Cnaphalocrocis medinalis) pest. J Appl Entomol, 132, 469–479.CrossRefGoogle Scholar
  36. Saravanakumar, D., Lavanya, N., Muthumeena, K., Raguchander, T., & Samiyappan, R. (2009). Fluorescent pseudomonad mixtures mediate disease resistance in rice plants against sheath rot (Sarocladium oryzae) disease. Biocontrol, 54(2), 273–286.CrossRefGoogle Scholar
  37. Srivastava, S., Bist, V., Srivastava, S., Singh, P. C., Trivedi, P. K., Asif, M. H., Chauhan, P. S., & Nautiyal, C. S. (2016). Unraveling aspects of Bacillus amyloliquefaciens mediated enhanced production of rice under biotic stress of Rhizoctonia solani. Frontiers in Plant Science, 7, 587.PubMedPubMedCentralGoogle Scholar
  38. Subramanian, S., & Smith, D. L. (2015). Bacteriocins from the rhizosphere microbiome - from an agriculture perspective. Frontiers in Plant Science, 6, 909.PubMedPubMedCentralGoogle Scholar
  39. Venkatesan, S., Gandhi, K., Thiruvengadam, R., & Kuppusami, P. (2015). Identification of antifungal antibiotics genes of Bacillus species isolated from different microhabitats using polymerase chain reaction. African Journal of Microbiol Res, 9(5), 280–285.CrossRefGoogle Scholar
  40. Waewthongrak, W., Leelasuphakul, W., & McCollum, G. (2014). Cyclic lipopeptides from Bacillus subtilis ABS–S14 elicit defense-related gene expression in citrus fruit. PLoS One, 9, 1–11.CrossRefGoogle Scholar
  41. Wang, S., Wu, H., Qiao, J., Ma, L., Liu, J., Xia, Y., & Gao, X. (2009). Molecular mechanism of plant growth promotion and induced systemic resistance to tobacco mosaic virus by Bacillus spp. Journal of Microbiology and Biotechnology, 19(10), 1250–1258.CrossRefPubMedGoogle Scholar
  42. Wu, L., Huijun, W., Lina, C., Yu, X., Borriss, R., & Gao, X. (2015). Difficidin and bacilysin from Bacillus amyloliquefaciens FZB42 have antibacterial activity against Xanthomonas oryzae rice pathogens. Scientific Reports, 5, 12975.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Xiong, H., Li, Y., Cai, Y., Cao, Y., & Wang, Y. (2015). Isolation of Bacillus amyloliquefaciens JK6 and identification of its lipopeptides surfactin for suppressing tomato bacterial wilt. RSC Advances, 5(100), 82042–82049.CrossRefGoogle Scholar
  44. Yao, A. V., Bochow, H., Karimov, S., Boturov, U., Sanginboy, S., & Sharipov, K. (2006). Effect of FZB24 Bacillus subtilis as a biofertilizer on cotton yields in field tests. Arch Phytopathol. Plant Prot, 39, 1–6.CrossRefGoogle Scholar
  45. Yen, I. C. (2001). Pesticide residues on local food crops: Realities and recommendations. Proceedings of the Caribbean food crops. Society, 37, 62–67.Google Scholar
  46. Yilmaz, M., Soran, H., & Beyatli, Y. (2006). Antimicrobial activities of some bacillus spp. strains isolated from the soil. Microbiological Research, 161(2), 127–131.CrossRefPubMedGoogle Scholar
  47. Yuan, J., Raza, W., Shen, W., & Huang, Q. (2012). Antifungal activity of bacillus amyloliquefaciens NJN-6 volatile compounds against Fusarium oxysporum f.sp.cubense. Applied and Environmental Microbiology, 78, 5942–5944.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Zhang, S. M., Wang, Y. X., Meng, L. Q., Li, J., Zhao, X. Y., Cao, X., Chen, X. L., Wang, A. X., & Li, J. F. (2012). Isolation and characterization of antifungal lipopeptides produced by endophytic Bacillus amyloliquefaciens TF28. African J Microbiol Res, 6(8), 1747–1755.Google Scholar

Copyright information

© Koninklijke Nederlandse Planteziektenkundige Vereniging 2018

Authors and Affiliations

  • Duraisamy Saravanakumar
    • 1
    Email author
  • Augustus Thomas
    • 1
  • Neera Banwarie
    • 1
  1. 1.Department of Food Production, Faculty of Food and AgricultureThe University of the West IndiesSt. AugustineTrinidad and Tobago

Personalised recommendations